振动时效的原理是什么?能代替热处理?
从宏观角度分析,振动时效使零件产生塑性变形,降低和均化残余应力并提高材料的抗变形能力,无意识导致零件尺寸精度稳定的基本原因。从分析残余应力松弛和零件变形中可知,残余应力的存在及其不稳定性造成了应力松弛和再分布,使零件发生塑性变形。故通常采用热时效方法以消除和降低残余应力,特别是危险的峰值应力。振动时效同样可以降低残余应力。零件在振动处理后残余应力通常可降低30~55%,同时也使峰值应力降低,使应力分布均匀化。除残余应力值外,决定零件尺寸稳定性的另一种重要因素是松弛刚性,或零件的抗变形能力。从微观方面分析,振动时效可视为一种以循环载荷的形式施加于零件上的一种附加动应力。众所周知,工程上采用的材料都不是理想的弹性体,其内部存在着不同类型的微观缺陷。铸铁中更是存在着大量形状各异的切割金属基体得石墨。故而无论是钢、铸铁或其他金属,其中的微观缺陷附近都存在着不同程度的应力集中。当受到振动时,施加于零件上的交变应力与零件中的残余应力叠加。当应力叠加的结果达到一定的数值时,在应力集中最严重的部位就会超过材料的屈服极限而发生塑性变形。这种塑性变形降低了该处残余应力峰值,并强化了金属机体。而后,振动又在一些应力集中较严重的部位上产生同样作用,直至振动附加应力与残余应力叠加的代数和不能引起任何部位的塑性性别为止,此时,振动便不再产生消除和均化残余应力及强化金属作用。上述解释已由大量的试验加以证明华云科技振动时效设备质量信得过!!产品可靠性更高!!从错位、晶格滑移等金属学理论上去解释振动时效机理。其主要观点是振动时效处理过程实际上是通过在工件的共振状态下,给工件的每一部位(从微观角度说是工件里的每一个微观晶格)施加一定的动能量,如果施加的这个能量值与微观组织本身原有的能量值(残余应力本身是一种势能)之和,足以克服微观组织周围的井势(也可以说是对恢复平衡的束缚力),则微观区域必然会产生塑性变形,使产生残余应力的歪曲晶格得以慢慢地回复平衡状态,使应力集中处地位错得以滑移并重新钉扎,达到消除和均化残余应力的目的。对于残余应力集中的地方,残余应力值较大,其微观组织本身所具有的回复平衡状态的势能值也较大,所以,此处的残余应力在震动处理过程中消除的就越多。只有从这一观点上才能解释通许多用第一种观点所解释不通的一些现象
振动时效去应力效果怎么样?能不能代替热处理
首先热处理消除应力的效果高于传统振动时效设备。传统振动时效设备在消除应力峰值,均化应力方面的作用明显,能够比热处理更长时间的保证工件的尺寸和形状精度,所以在机床行业振动时效应用的很多华云机电振动时效;但是热处理由于目前的环保监管和成本大幅提升等原因,并不是一个很好的选择。所以楼主要先清楚应力消除的目的,如果是为了防止变形,推荐振动时效;另外,频谱谐波振动时效设备消除应力的水平高于热处理,比传统振动时效保证精度的效果也更好华云振动时效。
振动时效原理
振动时效的定义
它描述的是这样一个物理过程:即利用一种严格受控的振动能量,对金属工件进行处理,以解决工件加工过程中和加工之后出现的内部残余应力导致尺寸变化及抗载荷能力变化问题。VSR对消除、减少或均化金属工件内的残余应力,提高工件抗动静载、抗变形能力,稳定尺寸精度有超卓的功效。
振动时效原理
从微观方面分析,振动时效可视为一种以循环载荷的形式施加于零件上的一种附加应力。当工件受到振动,施加于零件上的交变应力与零件中的残余应力叠加。当应力叠加的结果达到一定的数值后,在应力集中最严重部位就会超过材料的屈服极限而发生塑性变形。这塑性变形降低了该处残余应力峰值,并强化了金属基体,而后振动又在另一些应力集中较严重的部位上产生同样作用,直至振动附加应力与残余应力叠加的代数和不能引起任何部位的塑性变形为止,此时,振动消除和均化残余应力及强化金属的过程就结束。
振动时效的效果如何判断?
根据JB/T 10375-2002中华人民共和国机械行业标准,有以下几种方法:
1、参数曲线观测法
可根据振动时效过程中实时打印的a-t曲线的变化及a-n曲线振动前后的变化评估振动时效的实际效果。
出现下列情况之一时,即可判定振动时效有效:
a-t曲线上升后变平;
a-t曲线上升后下降,最终变平;
a-n曲线振后共振发生了单项特征或组合特征的变化(出现振幅升高、降低、左移、右移);
a-n曲线振后变的简洁而平滑;
a-n曲线振后出现低幅振峰增值现象。
2、尺寸精度稳定性测试:以尺寸精度为目的而进行振动时效处理的焊接构件,振动后应进行尺寸测试。尺寸测试具体方法如下:
(1),振后尺寸测试
(2),加工后尺寸测试
(3),长期放置,定期进行尺寸测试。
(4),在动载情况下测试
所有测试结果应当满足要求
3,残余应力检测法
A:推荐使用盲孔松弛法,也可以使用X射线衍射法或在条件许可时使用磁性法。
采用盲孔法测试时,测试点处材料厚度应大于钻孔直径的四倍。
用振前残余应力平均值、振后残余应力平均值来计算应力消除率,降低率应大于30%。
用振前和振后的最大与最小应力差衡量应力的均化程度,振动后的计算值应小于振动前的计算值。最大及最小应力一般应以焊缝的主应力或纵向应力为准。
传统振动时效设备在应用中的问题有那些?
1振动时效必须是受过专业培训的人员操作,一般的工人即使受过培训也很难掌握这项技术;
2有些复杂的工件必须是熟练的专业技术人员操作,一般工厂很难做到;
3工件在单件生产时调整相当繁琐,拾振器支撑点和激振点很难调到最佳状态,一种工件就需要制订一种工艺;
4需要操作者确定处理参数,对人的技能要求比较高
5由于有效振型较少,经振动时效处理后达不到较高精度要求,很难纳入工艺
6许多工件由于刚性和固有频率太高,找不到共振峰无法振动;机械制造业覆盖面仅为23%
7噪声过大也是难以推广的主要原因。
振动时效的应用范围
根据振动时效JB/T5926-2005标准,适用于:炭素结构钢、低合金钢、不锈钢、铸铁、有色金属(铜、铝、钛及其合金)等材质的铸件、锻件、焊接件、模具、机械加工件。
振动时效取代热时效所必须的条件
1 不管工件固有频率多高,刚性多强,所有工件必须能够振动起来;
2 为了达到或超过热时效的效果,必须多振型处理;
3 振动处理效果不能依靠操作者技能和经验,必须没有人的因素,保证处理效果稳定,才能纳入正式工艺;
4噪音要小,在生产车间能够就地处理
济南北方信源专业生产 电话0531-87061593请采纳。
消除应力中热处理、振动时效、自然时效的特点对比谁知道啊?
传统的消除残余应力的方法包括自然时效以及热时效两种, 两种方法均能在一定程度上消除构件残余应力, 稳定和提高构件的精度, 但这两种方法也都有自身的缺陷。自然时效将待处理的金属构件放置在露天中或事先准备的空荡的场地中, 充分利用自然环境中的振动条件或者白天黑夜交替形成的温度差等, 经过半年到一年长时间的闲置, 使构件在发生遇冷收缩或受热膨胀等作用时, 通过长期时间的作用形成构件内部的残余应力释放的过程称为自然时效法, 自然时效法虽然能消除构件内部的残余应力, 提高材料的刚度和尺寸稳定性, 并且不需要进行复杂的操作, 成本很低等优点, 但是这种方法降低的残余应力有限, 效率低下; 处理的时间相对太长, 无法匹配产品的周期并且占用大面积的空间, 因此目前在生产实践中很少得到应用。热时效通过加热炉,加热棒等加热措施, 使构件在加热作用下升温到能使构件释放残余应力所需的指定稳定, 并进行相应的工艺处理, 使环境的温度维持数小时后, 然后通过工艺处理完成降温, 来实现残余应力的降低的过程称为热时效, 该方法由于其消除残余应力的效果显著, 在目前的构件、材料生产中经常被使用, 但是该方法也存在需要搭建完善的加热系统, 产木的成木较高, 且耗能巨大, 并且会对环境造成污染等劣势, 而且该方法多数运用在大结构刚体, 对于一些小型的精密零件就显得无能为力, 因此目前大有被振动时效消除残余应力的方法取代的趋势。振动时效消除残余应力, 通过用外加振动的方法施加给存在残余应力的构件一个循环载荷, 使构件在循环载荷的作用下产生塑性变形, 实现发生塑性变形的部分残余应力实现释放, 稳定构件的尺寸, 提高精度的作用。振动时效工艺随着应用的普及也在不断的研发更先进的工艺,从对人工操作要求比较高的普通振动时效,到现在如HK3010全自动多维振动时效,从以前只有1-2个振型的低端振动时效,到现在可以自动寻找几十甚至无限多个振型和共振频率并自动优化,选择5个或更多进行振动去应力的频谱谐波振动时效。相对于自然时效和热时效等传统的消除残余应力的方法, 振动时效具有自身不可替代的优点, 因此得到了快速的发展以及大面积的应用。由于自然时效方法基本被淘汰,我们这里主要针对热时效方法进行比较, 具体的优势如下所示:可在工序任何步骤施加热时效法一般均是发生在精加工之前的工序, 精加工之后便不能进行热时效的方法消除残余应力, 而振动时效却可以灵活的运用到各个步骤中。操作简便热时效一般需要设计与之匹配的加热设备以及保温设备, 而且这些设备一般是固定在具体位置不做移动的, 而相比较而言, 振动时效设备相对较小, 能够自由带到操作现场, 加载到构件需要的位置上。 能耗低、无污染热时效需要为加热设备加热, 以及进行后续的保温处理, 这必然会浪费大量的能源, 并造成对环境的破坏, 而振动时效能耗相对热时效较少, 且对环境无污染。 耗时少一般的热时效方法经过加热处理、保温处理后, 会耗时超过小时,而相对而言, 振动时效耗时一般在分钟之内, 对于目前比较热门的超声振动时效一般只需几分钟。
消除应力中热处理、振动时效、自然时效的特点对比谁知道啊?各有什么优势呢
热时效是将金属放置在加热炉中,经过升温、保温和降温三个过程的温度变化,使金属迅速膨胀和收缩,降低材料的屈服极限,因而残余应力高的地方,就会超出屈服极限,使晶格滑移,产生微小的塑性变形,从而将残余应力释放、降低和均化。热时效需要专用的加热炉,投资大、能耗大、效率低、污染环境、容易产生新的变形和二次应力。自然时效是将金属长期放置露天,利用昼夜的温差和复杂多样的“环境震荡”,使金属发生缓慢、细微的收缩和膨胀,经长期积累得到释放残余应力的目的。自然时效周期长,效率低,导致成本增加。振动时效处理的弹性体其残余应力可以被消除20%~80%左右,高拉应力区消除的比例比低应力区大。因此可以提高使用强度和疲劳寿命,降低应力腐蚀。可以防止和减少由于热处理、机加工等工艺过程造成的微观裂纹的发生。可以提高弹性体抗变形的能力,稳定弹性体的精度,提高机械质量。同时,由于设备简单易于搬动,可以在任何场地上进行现场处理。它不受构件大小和材料的限制,从几十公斤到几十吨的构件都可以使用振动时效技术。在处理过程中,振动时效只需30 min即可进行下道工序。而热时效至少需要一至两天以上的时间,且需要大量的煤油、电、水等能源。因此,相对与热时效来说,振动时效可节省能源90%以上,可节省费用95%以上,特别是可以节省建造大型焖火窑的巨大投资。一下是HK系列振动时效设备的使用场景。