声波检测的方法
(1)工作方式岩体声波探测的现场工作,应根据测试的目的和要求,合理地布置测网、确定装置距离、选择测试的参数和工作方法。测网的布置应选择有代表性的地段,力求以最少的工作量解决较多的地质问题。测点一般应布置在岩性均匀、表面光洁、无局部节理、无裂隙的地方,以避免介质不均匀对声波的干扰。装置的距离要根据介质的情况、仪器的性能以及接收的波形特点等条件而定。(2)测试方法将各种测试方法归纳总结,由表5.1列出。现有的测试方法分为三大类,即透射法、折射法和反射法。三大类中又各有平面测试及孔中测试。所用振源,根据情况可选用换能器发射、锤击、电火花。出于纵波较易识读,因此当前主要是利用纵波进行波速的测定。在测试中,最常用的是直达波法(直透法)和单孔初至折射波法(一发二收或二发四收)(图5.32)。反射波法目前仅用于井中的超声电视测井和水上的水声勘探。陆地上的反射波法还处于试验阶段。表5.1声波检测方法总汇环境与工程地球物理图5.32常用的几种现场工作示意图
声波检测的原理
(1)检测原理声波检测的基本原理与地震勘探的原理十分类似,是以研究弹性波在岩土介质中的传播特征为基础。声波在不同类型的介质中具有不同的传播特征。当岩土介质的成分、结构和密度等因素发生变化时,声波的传播速度、能量衰减及频谱成分等都将发生相应的变化,在弹性性质不同的介质分界面上还会发生波的反射和折射。因此,用声波仪器探测声波在岩土介质中的传播速度、振幅及频谱特征等,便可推断被测岩土介质的结构和致密完整程度。例如,当对某岩体(或硐)进行声波探测时,只要将发射点和接收点分别置于该岩体或硐的不同地段,根据发射点和接收点的距离和声波在岩体中的传播时间,即可算出被测岩体的波速v。也可根据声波振幅的变化和对声波信号的频谱分析,还可了解岩体对声波能量的吸收特性等,从而对岩体作出评价。声波检测过程如图5.31所示。图5.31声波检测过程示意图(2)检测仪器声波仪主要由发射系统和接收系统两部分组成。发射系统包括发射机和发射换能器。接收系统由接收机、接收换能器和用于数据记录和处理用的微机组成。发射机是一种声源讯号发生器。其主要部件为振荡器,由它产生一定频率的电脉冲,经放大后由发射换能器转换成声波,并向岩体辐射。电声换能器是一种实现声能和电能相互转换的装置。其主要元件是压电晶体,一种天然的(或人工制造的)晶体或陶瓷。压电晶体具有独特的压电效应,将一定频率的电脉冲加到发射换能器的压电晶片时,晶片就会在其法向或径向产生机械振动,从而产生声波,并向介质中传播。晶片的机械振动与电脉冲是可逆的。接收换能器接收岩体中传来的声波,使压电晶体发生振动,则在其表面产生一定频率的电脉冲,并送到接收机。根据测试对象和工作方式的不同,电声换能器也有多种型号和样式,如喇叭式、增压式、弯曲型等,还有测井换能器和横波换能器等。接收机是将接收换能器接收到的电脉冲进行放大,并将声波波形显示在荧光屏上,通过调整游标电位器,可在数码显示器上显示波至时间。若将接收机与微机连接,则可对声波讯号进行数字处理,如频谱分析、滤波、初至切除、计算功率谱等,并可通过打印机输出原始记录和成果图件。