M87星系中心那个著名的黑洞正喷射出大量移动速度接近光速的物质
M87*是M87星系中心的超大质量黑洞,它以近乎光线的速度发射物质喷气流。黑洞吸引物质,其中一些物质被喷射返回到宇宙空间。这些被喷射的物质以喷射流或光束的形式沿着磁场线运动,由此产生喷射流。X射线数据显示有两结喷射流分别拥有6.3和2.4倍于光线的速度,而超光速运动可以解释这一“违背物理规律”的速度。
早在很久以前,这个黑洞就被命名为M87*。天文学家们已经观察它很长时间了。去年,事件视界望远镜拍摄到了M87*的图像,也就是史上第一张黑洞图像。正是这张照片让M87*家喻户晓。
M87 星座 (也叫处女座 A 或 NGC 4486)是处女座中的一个超大型椭圆星系,离我们大约5300万光年。M87长轴长约24万光年,略微大于银河系的直径·。
M87 星座 拥有多达12,000个球状星团。相比之下,银河系仅有差不多200个星团。科学家认为M87与其他椭圆星系一样,都是通过合并来获得如此之多的球状星团。
M87* (M87 星) 是位于 M87 星系中心的超大质量黑洞 (SMBH),质量比任意已知的黑洞都大。它的质量是太阳的65亿倍。 M87*距地5500万光年之外,而它的喷射物延伸出足足5000光年。
几年前,哈勃望远镜记录拍摄到了这些喷射物质在可见光和红外波段下的合成图像。这张相片可以说在天文界无人不知。
多年来,天文学家一直在观察M87*喷射物在不同波长下的图像:长波、可见光波长和X射线。然而,钱德拉X射线仪观测首次发现,部分喷射物的移动速度似乎远远超过光速的99%。
在一次新闻发布会上,剑桥的哈佛和史密森尼 (Cfa)天体物理学中心的拉尔夫·卡夫说:"这可以说是X射线数据记录仪使用以来首次测出如此极端的速度。我们需要调整钱德拉X射线测量仪再次进行确认。
卡夫在夏威夷火奴鲁鲁举行的美国天文学会会议上介绍了这些新成果。研究结果也发表在《天体物理学杂志》上一篇题为"M87X射线喷射中视超光速运动的检测"的论文中。
这些喷射物是怎么产生的?
像M87*这样的星系中心黑洞会不停的将物质拉向自己。随着距离的缩短(由于角动量守恒定律),这些物质开始围绕着黑洞高速旋转,从而形成了吸积盘。这种物质是很少会被黑洞吞噬的。
只有少量的物质会落入黑洞,而另一些则被射向太空。这些物质沿着磁场线,以射流和光的形式被喷射向太空。这些喷射物不是均匀平滑的:它们具有像钱德拉这样的观测仪可以分辨的物质团。
天文学家们对其中两个非常感兴趣。多年来,他们用图像来追踪这些物质团的运动。它们分别距离中心黑洞900光年和2500光年。
钱德拉天文台的X射线数据显示,这些物质团以令人难以置信的速度移动:靠近黑洞中心的那个物质团移动速度达到了6.3倍光速,另一个物质团的速度是光速的2.4倍。
等等,没有物质的移动速度能够超过光速!
超光速运动?那是不可能的。没有什么比光运动得更快了。这当然是真理。所以一定可以解释这个观测结果的原因。
这个现象现在被称为"视超光速运动"。
"物理学界公认的定律之一便是,没有什么能比光运动的更快,"来自CfA的论文合作作者布拉德·斯尼奥斯说道,"我们并没有推翻物理学的基础,而是发现了一个叫做视超光速运动的神奇物理现象。“
造成视超光速运动现象需要两个关键因素:物质的运动速度和它的运动轨迹与我们观察方向形成的夹角。当一个物体,比如说像这种黑洞的喷射物,以接近光速的速度几乎朝着我们运动,我们就会有一种,这个物体的运动速度超过了光速的错觉。这就是视超光速运动。
正是因为M87黑洞的喷射物本身的速度几乎和光一样快,而且它的喷射方向几乎正对着我们,所以这些物质看起来有着不可思议的速度。
天文学家以前确实观察到类似的视超光速运动的物质,但在X射线波段还是第一次。这意味着他们暂时没法确定到底是物质本身以99%的光速移动,还是喷流产生的冲击波。
M87* 黑洞的射流沿着自身的磁场方向呈螺旋状发散,这似乎可以告诉我们问题的答案。在X射线的观测中,研究团队发现,视速度达到光速6.3倍的团块在2012年至2017年之间X射线强度下降了超过70%。
但这种能量损失只发生在X射线波段,在可见光和紫外波段没有明显现象,这很可能是由于粒子在沿着磁场运动的过程中不断逸散能量所致。
这种现象被称为同步辐射耗散。这意味着天文学家观测到的不同时间的X射线数据是来自同一群粒子的,也就是说,他们所观测的不可能波,而是实际存在的粒子。
"我们的工作提供了迄今为止最有力的证据,证明M87*的喷射物实际上是正以接近宇宙速度极限的速度飞行的大量粒子。"斯尼奥斯说。
钱德拉、EHT (事件视界望远镜)和 M87*
钱德拉X射线观测仪的数据和事件视界望远镜在研究M87*方面可以说是相辅相成。当 EHT花了六天时间拍摄黑洞的事件穹界的时候,钱德拉观测仪正研究数百年前从M87*中喷出的物质。
同时EHT图像比钱德拉的成像小1亿倍。
"这就像事件视界望远镜正在提供火箭发射台的特写视图,"CfA的另一位共同作者保罗·努尔森说,"而钱德拉观测仪正在向我们展示飞行中的火箭。”
作者: sciencealert
FY: 2.7K
转载还请取得授权,并注意保持完整性和注明出处
首张银河系中心黑洞照片公布,跟M87星系中心黑洞照片相比,有哪些不同?
首张银河系中心黑洞照片公布,跟M87星系中心黑洞照片相比,两者非常类似,但是如果仔细观察的话也可以看出不同,由于围绕两个黑洞气体旋转速度的不同,所以M87星系的黑洞的背景看起来更加清晰,而银河系中心黑洞的背景看起来比较模糊,从照片中也可以看出两颗黑洞的体积也是不同的。在2022年5月12日事件视界望远镜项目公布了人类第二张黑洞的照片,这张黑洞照片来自于地球所在的银河系中心,跟人类的关系更为密切,这颗黑洞的质量大约相当于400万个太阳,体积相当于17个太阳直径大小。人类第一张黑洞照片来自于室女座A星系,早在2019年4月就已经公布了,其实很人类早在2017年就已经开始同时观测这两个黑洞,之所以拍摄的照片差距三年的时间,是以为两个黑洞的拍摄难度不同,从照片上看这两颗黑洞看起来非常的相似,但是仔细观察还是可以看出区别。由于黑洞巨大的吸引力,导致黑洞周围的所有气体都围绕着黑洞以光速旋转,但是由于黑洞体积的不同,M87星系的黑洞,气体围绕旋转一周需要数天的时间,而银河系中心黑洞由于在质量跟体积上比M87星系的黑洞小了1500倍,所以气体围绕银河系中心黑洞旋转的速度非常的快,这也给拍摄银河系中心黑洞造成了很大的困难,所以这张黑洞照片是科学家通过对上千张照片进行平均计算最终形成的平均效果。相信随着观测技术的提高,会有越来越多清晰的黑洞图片。你觉得首张银河系中心黑洞照片公布,跟M87星系中心黑洞照片相比,有哪些不同? 欢迎留言讨论。
人类首张黑洞照片正式发布,这样的发现有什么重要意义?
宇宙浩瀚广阔,有着无数各类天体,除了我们比较常见的恒星,行星之外,还有一些特殊神秘的天休,比如中子星,脉冲星,黑洞等。要问宇宙中最神秘的天体是什么?相信很多人都会回答:黑洞。没错,宇宙中最神秘的天体要属黑洞了,它是时空中的无底深渊,即使是光都无法逃逸。对于黑洞都只是广义相对论的预言、爱因斯坦的方程、模拟电脑图像、引力波等项目的间接证据,或者科幻小说的想象事物。虽然科学家还无法直接观测到黑洞,但是由于黑洞它太霸道了,它在吞噬恒星等物质的时候,会爆发发耀眼的光芒,强烈的辐射波会传播很远很远,最后被射电望远镜探测到这些光芒,通过这些异常的天体现象,科学家知道了黑洞的存在。虽然科学家知道了黑洞的存在,但是想要观测到它拍摄到它的图像却是非常困难的。然而,当全球科学界将分布在世界各地的8个射电望远镜(阵)组成“地球级别”的虚拟望远镜阵列,同一时刻、同一方向,对准同一片遥远星空,就连黑洞——这些深藏于宇宙各处的引力陷阱,也会“发出耀眼光芒”从美国夏威夷到智利,从伊比利亚半岛到南极……全球30多个研究所,200多名科学家,倾数年心血,携手并肩,共同记录黑洞周围吸积盘和喷流等发出的耀眼光芒,从而让超大质量黑洞无处遁形,显现“真容”。正是全球同步的努力,让人类拍摄到有史以来首张黑洞照片。科学家向全世界公布了人类首涨黑洞照片,人们第一次真正见识到黑洞长什么样,黑洞的真容不再只存在于人们的幻想中,那么首张黑洞照片的公布,会对现代科技有哪些现实作用?可能很多人看到人类首张照片,看到的只是一个美丽的宇宙天体现象,可是对于科学界,对于整个人类文明,它的意义却是非凡的,它绝不仅仅是一张照片这么简单,那么具体的有哪些现实的指导意义?一、验证爱因斯坦相对论,相信很多人都知道,爱因斯坦是人类近代史上伟大的科学家,他对宇宙时空理论的研究可以说是划时代的,尤其是相对论的提出,更是让人类迈入了新的阶段。对于黑洞的探索和研究,爱因斯坦广义相对论已经有预测。通过广义相对论对黑洞作出的预测是:一个圆形“剪影”被一圈明亮的光子圆环所围绕,那么这个预测是否正确呢?要检测它的正确性,我们就必须要得到一张真实的黑洞照片,而这次通过全球合作,终于获得到了真实的黑洞照片。通过广义相对论预测的黑洞照片和超级望远镜拍摄到的真实黑洞照片做对比,最后发现它们完全一致。再一次让人们看到了爱因斯坦的伟大,验证了广义相对论的伟大和正确。有了这个证明,对于人类未来的太空探索有着重要的意义。比如,我们知道广义相对论是正确的,那么在未来,随着人工智能的的快速发展,在寻找和探索宇宙天体的时候,就可以通过广义相对论的的预测功能,将公式输入超级计算机,从而预测宇宙中某个位置可能存在的未知天体。确定了位置,再通过天文望远镜等观测设备去确定这个位置是否存在被预测的天体,这相对在茫茫宇宙中,靠碰运气的寻找天体来说,要强太多了。二、打破广义相对论与量子力学之间的矛盾,相信不少科学爱好者朋友都知道,广义相对论和量子力学是现代物理学的两大支柱,广义相对论适用于质量巨大且引力作用很强的物体,比如黑洞;量子力学则控制着亚原子粒子的奇异世界。但这两种在各自领域都非常成功的理论却互不相容。科学家不知道广义相对论在黑洞的边界是否正确,所以无法对一些东西进行取舍,而这次首张黑张照片的出现,验证了广义相对论对黑洞边界预测的正确性,它将会为物理学的前进指明新的方向,对于整个物理学都有不错的指导意义。三、检测黑洞对于时空影响的正确性,广义相对论作为爱因斯坦提出的革命性理论之一问世。在这个理论中,爱因斯坦提出,物质会扭曲或弯曲时空的几何结构,人类以重力的形式感受到这种时空扭曲,而黑洞正是爱因斯坦理论的首批预测之一。根据爱因斯坦相对论,黑洞的视界范围内是存在着空间扭曲和时间效应的,时空理论一直以来都是神秘的存在,它是时间和空间的结合体。在一些科学猜想中,掌握了时空就掌握了穿梭时空的奥秘,可以回到过去,前往未来。但是时空却是科学界最难破解和研究的课题,尤其是时间概念更是不知从何下手。根据科学家对黑洞的探索和分析,认为黑洞也是有自转的,而且这个速度非常快,有可能达到亚光速甚至是光速。如果黑洞视界范围内是一个扭曲的时空,那对于人类的意义将非凡。曾经有科学家提出过利用黑洞视界来实现穿梭未来的设想,这个设想就是让宇宙飞船进入黑洞视界,然后随着黑洞的超高速旋转让飞船实现亚光速或光速飞行。我们都知道,物体的速度越快,时间越慢,当物体的速度无限接近光速的时候,那物体的时间也无限接近于静止。这种情况之下,绕黑洞运行的飞船对于地球上的人们来说,它可能已经运行,但是对于飞船内的宇航员来说,有可能只是过去了几分钟。当飞船停上飞行脱离黑洞视界后,来到地球,这个时候地球已经是后,从而实现前往未来的梦想。以上三点只是人类首涨黑洞公布后,会对现实科技产生现实影响的一部分,其实它的影响远不止这些,否则科学家也不会那么激动,对于我们来说,看到的只是一张照片,但在科学家的眼里,这可能是人类文明对太空探索迈出的新篇章。
黑洞高清照片发布,科学团队有何关于黑洞的研究成果?
北京时间3月24日晚上10点,国际天文望远镜(EHT)国际项目拍摄了第一张黑洞照片,并发布了新的黑洞照片:偏振光下M87超大质量黑洞的图像。这项成就迅速席卷了全球科学界。与之前发布的略带模糊的“甜甜圈”图形相比,这次发布的照片要清晰得多。这不是因为EHT项目升级了高清摄像机,而是通过处理极化信号获得的。实际上,这两张照片来自同一批成像观察结果。光具有电场和磁场,并且可以在所有方向振动。但是偏振光是不同的,它仅在一个方向上振动。当光离开恒星或黑洞周围巨大的明亮的盘状气体和碎片时,大多数光都是非偏振的,但是宇宙中的尘埃,等离子体,磁场等都可能将正常光转换为偏振光。因此,我们可以通过检测来了解黑洞周围环境的特征。偏振器仅允许特定方向的偏振光通过。该动画显示了经过偏振面连续旋转的偏振器后黑洞偏振图像的变化。当拍摄和观察黑洞时,EHT会充分考虑偏振成像。因此,在接收和记录电磁波信号时,已经收集并记录了两个可以恢复电磁波极化信息的正交极化信号。经过长期的工作和反复的讨论,最终确定了黑洞偏振图像的结果,这是3月24日发布的高清黑洞图像。黑洞的高清照片还没有结束,EHT项目团队雄心勃勃地计划拍摄黑洞的演变。 “我们有一个更加雄心勃勃的目标,并制定了下一个十年计划:通过EHT实时观察人马座A *(银河系中的超大质量黑洞)的演变,并最终制作一部黑洞电影。”多尔曼说。 多尔曼参加了第三届WLF的许多会议:在关于科学前沿的演讲中,他详细介绍了EHT项目的黑洞观测;在引力波峰会的世界顶级科学家中,他与巴里·巴里什,基普·索恩和其他宇宙探索的前辈开始了对话和交流。此外,他还参加了WLF和字节跳动发起的年度特殊计划“科学家,请回答2020”,以向大多数网民介绍科学知识。在第三届WLF结束后,多尔曼发了一封热情洋溢的信:“我希望当下届世界顶级科学家论坛举行时,我们可以坐在一起,讨论科学团队,全球合作和资源共享。”他还希望传播通过WLF,EHT背后的激动人心的力量更多。 “我一直希望能够使用EHT的例子来告诉您关于实现大梦想的故事。在这个过程中,我确实学到了很多东西。”他说。
高清黑洞照片发布,科学团队还发现了什么其他成果?
2021年3月24日晚上10点,由中国科学家组成的事件地平线望远镜(ETH)协作组织宣布了最新研究结果:偏振光下M87超大质量黑洞的图像。这是两年前成功拍摄人类历史上第一个黑洞照片后的最新进展。这也是天文学家第一次测量极化信息,该极化信息表征了如此靠近黑洞边缘的磁场。这一结果是解释距地球5500万光年的M87星系如何从其核心传播巨大能量射流的关键。对于研究黑洞的天文学家来说,这项工作是一个重要的里程碑:偏振光所携带的信息使我们能够更好地了解2019年4月发布的第一张黑洞图像背后的物理机制,这在以前是不可能的。 “黑洞极化成像的结果对于理解黑洞周围的磁场和物理过程至关重要。” EHT合伙人,上海天文台研究员卢如森解释说,过去,由于观测精度不足,天文学家只能使用理论模型来确定其结构,并进行猜测和推导,现在看到关键证据。从M87核心发射出的明亮的能量和物质射流向外延伸至少5,000光年,是银河系最神秘,最壮观的特征之一。黑洞边缘附近的大部分物质都会掉入其中,并且黑洞周围的一些粒子将在被捕获之前立即逃逸并以射流的形式散布开来。为了更好地理解这一过程,天文学家建立了黑洞边缘物质行为的不同模型。但是他们仍然不确切知道如何从比太阳系大小的星系中心发射出比星系规模更大的射流,或者物质如何掉入黑洞。这个全新的黑洞及其阴影的EHT极化图像使天文学家首次成功探索了黑洞的外边缘,在该处可能吸入或喷射了物质。 EHT的共同成员,普林斯顿理论科学中心的研究人员安德鲁·查尔(Andrew Char)说:“这次发布的最新极化图像是了解磁场如何使黑洞“吞噬”物质的关键。发出巨大的能量射流。”在最新的观测研究中,来自澳大利亚,美国和中国的三个团队分别对黑洞的距离,质量,旋转和演化进行了最准确的测量,最终获得了 X1黑洞的最新距离7200多光年,人们发现该系统包含一个质量为太阳质量21倍的黑洞,并且黑洞的视界以至少光速的95%的速度旋转。这是人类发现并确认的唯一黑洞,其质量超过太阳质量的20倍,并且会像这样旋转。最快的X射线双星系统。人类探索黑洞的结果仍在继续。去年10月6日,英国人罗杰·彭罗斯,德国人赖因哈德·根策尔和美国安德烈娅·盖兹因其对黑洞研究的贡献而获得2020年诺贝尔奖物理奖。