数学里阶乘是什么意思?
阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。5!=1*2*3*4*5阶乘(factorial)是基斯顿·卡曼(Christian Kramp, 1760 – 1826)于1808年发明的运算符号。阶乘,也是数学里的一种术语。阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。在表达阶乘时,就使用“!”来表示。如h阶乘,就表示为h!阶乘一般很难计算,因为积都很大。以下列出1至10的阶乘。1!=1,2!=2,3!=6,4!=24,5!=120,6!=720,7!=5040,8!=403209!=362880,10!=3628800另外,数学家定义,0!=1,所以0!=1!参考资料百度:www.baidu.com
什么是阶乘
阶乘的主要公式:1、任何大于1的自然数n阶乘表示方法:n!=1×2×3×……×n 或 n!=n×(n-1)! 2、n的双阶乘:当n为奇数时表示不大于n的所有奇数的乘积 。3、当n为偶数时表示不大于n的所有偶数的乘积(除0外),如:8!=2×4×6×8。4、小于0的整数-n 的阶乘表示:(-n)!= 1 / (n+1)!拓展与再定义一直以来,由于阶乘定义的不科学,导致以后的阶乘拓展以后存在一些理解上得困扰,和数理逻辑的不顺,阶乘从正整数一直拓展到复数。传统的定义不明朗。所以必须科学再定义它的概念。真正严谨的阶乘定义应该为:对于数n,所有绝对值小于或等于n的同余数之积,称之为n的阶乘,即n!对于复数应该是指所有模n小于或等于│n│的同余数之积。对于任意实数n的规范表达式为:正数 n=m+x,m为其正数部,x为其小数部。负数n=-m-x,-m为其正数部,-x为其小数部。
高阶导数的意义是什么
导数表示函数曲线在某个点处的斜率,也就是变化趋势的大小
二阶导是反映一阶导数变化的快慢
三阶导反映的二阶导的变化快慢
。。。。。。(无限套娃ing)
至于高阶导对于原先函数的影响嘛
并没有什么具体的意义
但如果硬要强加意义的话
大概就是对于原先函数变化的累加效应吧
这个累加效应在极小的时间内(微分的概念)变化等同于没有,但是在可观测到的时间内效果比一阶导数要大
或者这么说,你绘制一幅复杂的函数图像(仅限普通多项式),求几次导反映了你绘制图像的精准度。
求的导数阶数越高,绘出的图像越精准
或者也可以这么说,减少不确定度
这么说吧,你只求一阶导,你只能知道原函数是单调增还是单调减,
但你再求二阶导,你便能知道原函数的凹凸性。原函数到底是凹进去还是凸出来就能知道
但同样是凹进去的地方,哪个凹得更厉害?
只求二阶导是不知道的
求三阶导,你就能知道凹凸的幅度大小
。。。。。(无限套娃ing)
推荐你了解了解泰勒展开和微分的概念
差不多就能明白了
高阶导数到底是什么鬼?
高数高阶导数公式中d\dt是一个整体记号,单独出现一个d没有意义,单独出现d\dt也没有意义,必须出现d(接一个东西)/dt,表示对括号中的函数求导,并且是对自变量t求导。一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。扩展资料:对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
阶乘是什么?
设f(x)=x!,可导函数必须是连续的,但是在这里x只能是去整数,它的定义域是在R上的一些孤立的点,所以它不可求导的。一个正整数的阶乘是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。扩展资料:拓展与再定义一直以来,由于阶乘定义的不科学,导致以后的阶乘拓展以后存在一些理解上得困扰,和数理逻辑的不顺。阶乘从正整数一直拓展到复数。传统的定义不明朗。所以必须科学再定义它的概念真正严谨的阶乘定义应该为:对于数n,所有绝对值小于或等于n的同余数之积。称之为n的阶乘,即n!对于复数应该是指所有模n小于或等于│n│的同余数之积。。。对于任意实数n的规范表达式为:正数 n=m+x,m为其正数部,x为其小数部负数n=-m-x,-m为其正数部,-x为其小数部对于纯复数n=(m+x)i,或n=-(m+x)i我们再拓展阶乘到纯复数:正实数阶乘: n!=│n│!=n(n-1)(n-2)....(1+x).x!=(i^4m).│n│!负实数阶乘: (-n)!=cos(m)│n│!=(i^2m)..n(n-1)(n-2)....(1+x).x!(ni)!=(i^m)│n│!=(i^m)..n(n-1)(n-2)....(1+x).x!(-ni)!=(i^3m)│n│!=(i^3m)..n(n-1)(n-2)....(1+x).x!