双变量正态分布名词解释
双变量正态分布是指一对随机变量在二维平面上服从正态分布的情况。在统计学中,双变量正态分布被广泛应用于描述两个相关变量之间的关系。以下是对双变量正态分布中的相关名词的解释:1.正态分布:正态分布是一种连续型概率分布,也被称为高斯分布。在正态分布中,数据的分布对称,呈钟形曲线,均值、方差和标准差是其主要参数。2.双变量:双变量指的是在一个随机实验或数据集中涉及两个变量。这两个变量可以是相互独立的,也可以是相关的。3.相关:两个变量之间的相关性是指它们之间的关系或联系程度。相关性可以是正相关(一个变量增加时,另一个变量也增加),也可以是负相关(一个变量增加时,另一个变量减少),或者没有相关性。4.协方差:协方差是一个衡量两个变量之间关系的统计量。它描述了两个变量随着彼此变化而一起变化的趋势,具体数值的正负表示相关关系的方向。5.相关系数:相关系数是用来衡量两个变量之间相关关系强度和方向的统计量。最常见的相关系数是皮尔逊相关系数,它的取值范围在-1到1之间,接近1表示强正相关,接近-1表示强负相关,接近0表示无相关性。在双变量正态分布中,两个变量都满足正态分布,并且它们的联合分布也是正态分布。通过研究双变量正态分布的均值、方差、协方差和相关系数,可以揭示两个变量之间的关系及其重要特性。这对于数据分析、建模和预测具有重要意义。
正态分布的概念和特征
一、正态分布的概念由一般分布的频数表资料所绘制的直方图,可以看出,高峰位于中部,左右两侧大致对称。我们设想,如果观察例数逐渐增多,组段不断分细,直方图顶端的连线就会逐渐形成一条高峰位于中央(均数所在处),两侧逐渐降低且左右对称,不与横轴相交的光滑曲线。这条曲线称为频数曲线或频率曲线,近似于数学上的正态分布(normal distribution)。由于频率的总和为100%或1,故该曲线下横轴上的面积为100%或1。为了应用方便,常对正态分布变量X作变量变换。该变换使原来的正态分布转化为标准正态分布(standard normal distribution),亦称u分布。u被称为标准正态变量或标准正态离差(standard normal deviate)。实际工作中,常需要了解正态曲线下横轴上某一区间的面积占总面积的百分数,以便估计该区间的例数占总例数的百分数(频数分布)或观察值落在该区间的概率。正态曲线下一定区间的面积可以通过附表1求得。对于正态或近似正态分布的资料,已知均数和标准差,就可对其频数分布作出概约估计。正态分布也叫常态分布,是连续随机变量概率分布的一种,自然界、人类社会、心理和教育中大量现象均按正态形式分布,例如能力的高低,学生成绩的好坏等都属于正态分布。它随随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。标准正态分布是正态分布的一种,其平均数和标准差都是固定的,平均数为0,标准差为1
什么是正态分布?
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)为试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布。若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx 方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
什么是正态分布
正态分布在统计学中是一个很重要的概率分布类型,哪怕是在实际生活中也有着重要的指导与应用作用,比如:某学校学生的成绩分布,男子身高、工厂生产产品的尺寸等等。同时,正态分布也是许多检验的基础,在实际使用统计分析时,人们总是乐于正态检验。比如F检验以及t检验等在总体不是正态分布时一般没有意义。所以检验数据是否服从正态分布一直都是统计学比较重要的问题。所以本篇文章分别进行对检验正态分布的方法进行说明。检验数据是否服从正态分布的方法有很多,常用的有正态性检验(S-W检验、K-S检验),查看峰度与偏度以及图示化(直方图、p-p/q-q图)等。正态性检验顾名思义判断总体是否服从正态分布的检验。它是统计判决中重要的一种特殊的拟合优度的假设检验。SPSSAU提供的正态性检验方法有三个如下:针对三种正态性检验方法的区别如下:SW检验一般需要样本量小于50,如果样本量大于50建议使用K-S检验,JB检验基于数据样本的偏度(统计数据分布偏斜方向和程度的度量)和峰度分析(表征概率密度分布曲线在平均值处峰值高低的特征数),一般用于大样本分析。正态性检验属于非参数检验,原假设为“样本来自的总体与正态分布无显著差异就符合正态分布”,即当p0.05是接受原假设,数据符合正态分布。接下来进行查看‘峰度和偏度’如何进行数据正态分布的检验。偏度和峰度偏度也称偏斜度,描述数据分布的偏斜程度和方向,峰度描述数据分布曲线陡峭平缓程度的统计量,理论上讲,标准正态分布偏度和峰度均为0,但现实中数据无法满足标准正态分布,因而如果峰度绝对值小于10并且偏度绝对值小于3,则说明数据虽然不是绝对正态,但基本可接受为正态分布。【参考文献:Kline R , Kline R B , Kline R . Principles and Practice of Structural Equation Modelling[J]. Journal of the American Statistical Association, 2011, 101(12).】。除此之外,还有图示化可以进行验证,比如直方图、p-p/q-q图。图示化除了用正态性检验和偏度和峰度的方法,还可以结合图形进行分析数据是否符合正态分布。其中包括直方图和p-p/q-q图。直方图如果使用直方图,直方图若呈现‘中间高,两边低,左右基本对称的钟形图’则基本服从正态分析,但是数据量过少等也可能影响结果导致很难呈现出标准的正态分布,如果是这种情况如果看见‘钟形’也可以接受的。比如:上图可以看出,数据呈现的分布并不是很对称,但是也出现近似‘钟形’曲线,所以也可以勉强接受。p-p/q-q图p-p图和q-q图都是根据累计分布函数理论计算的,使用它们可以进行数据是何种分布的检验,但是常用于检验数据是否服从正态分布。如果图形中所有店都聚集在直线上,则说明变量分布服从于所要检验的分布,直观说法就是如果散点分布近似‘对角线’则可以认为正态分布。比如:从上图可以看出散点分布近似‘对角线’则可以认为正态分布。q-q图也是如此。几种方法说明上述展示几种正态检验的方法,大体可以分为正态性检验,偏度与峰度以及图示化三种,其中正态性检验要求最为严格,但是从实用性角度,正态性检验远不如偏度与峰度以及图示化这俩种实用,有时常常会出现这样的结果,明明数据偏度绝对值小于3峰度绝对值小于10,或者p-p图呈现近似“对角线”的结果,但是正态性检验并不通过。此时建议不要对正态性检验过于依赖,因为正态性检验要求严格通常无法满足,所以在分析中可以使用其它两种方法辅助进行判断。