莆仙生活网
当前位置: 莆仙生活网 > 知识库 >

神经网络

时间:2024-11-13 01:32:40 编辑:莆仙君

什么是神经网络

神经网络(neural network)是一种模拟人脑神经思维方式的数据模型,神经网络有多种,包括BP神经网络、卷积神经网络,多层感知器MLP等,最为经典为神经网络为多层感知器MLP(Multi-Layer Perception),SPSSAU默认使用该模型。类似其它的机器学习模型(比如决策树、随机森林、支持向量机SVM等),神经网络模型构建时首先将数据分为训练集和测试集,训练集用于训练模型,测试集用于测试模型的优劣,并且神经网络模型可用于特征重要性识别、数据预测使用,也或者训练好模型用于部署工程使用等。神经网络原理如下:原理上,首先输入特征项X,即放入的自变量项,神经网络模型时,可将特征项X构建出‘伪特征’,比如输入的是性别、年龄、身高、体重等,其结合‘激活函数’构建出一些‘伪特征项’(即事实不存在,完全由模型构建的特征项,并且是无法解释的特征项),具体构建上,比如为线性激活函数时可直观理解为类似“y=1+2*x1+3*x2+4*x3+…”这样的函数)。并且构建‘伪特征项’可有多个层次(即‘隐层神经元’可以有多层,默认是1层),并且每个层次可以有多个神经元(默认是100)。最终由数学优化算法计算,得到输出,即预测项。可以使用SPSSAU进行操作:

神经网络的基本原理是什么?

神经网络的基本原理是:每个神经元把最初的输入值乘以一定的权重,并加上其他输入到这个神经元里的值(并结合其他信息值),最后算出一个总和,再经过神经元的偏差调整,最后用激励函数把输出值标准化。基本上,神经网络是由一层一层的不同的计算单位连接起来的。我们把计算单位称为神经元,这些网络可以把数据处理分类,就是我们要的输出。神经网络常见的工具:以上内容参考:在众多的神经网络工具中,NeuroSolutions始终处于业界领先位置。它是一个可用于windows XP/7高度图形化的神经网络开发工具。其将模块化,基于图标的网络设计界面,先进的学习程序和遗传优化进行了结合。该款可用于研究和解决现实世界的复杂问题的神经网络设计工具在使用上几乎无限制。以上内容参考:百度百科-神经网络