sin60°的值是多少?
sin60°=√3/2对于任意直角三角形,假设斜边为c,60°角的对边为b。则:sin60°=b/c=(√3)/2。在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=∠A的对边/斜边。和角公式:sin ( α ± β ) = sinα · cosβ ± cosα · sinβsin ( α + β + γ ) = sinα · cosβ · cosγ + cosα · sinβ · cosγ + cosα · cosβ · sinγ - sinα · sinβ · sinγcos ( α ± β ) = cosα cosβ ∓ sinβ sinαtan ( α ± β ) = ( tanα ± tanβ ) / ( 1 ∓ tanα tanβ )
cos30°的值是多少?
cos30°= √3/2cos是余弦值,即余弦值=邻边÷斜边。因为在三角形中,30°所对的直角边是斜边的一半。所以这个三角形的三边之比=1:√3:2。所以cos30°=邻边÷斜边=√3:2=√3/2拓展资料:特殊三角函数值 特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。三角函数:α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
cos30度等于多少
cos30°=邻边÷斜边=√3:2=√3/2。cos指的是余弦值,余弦值=邻边÷斜边。在三角形中,30°所对的直角边是斜边的一半,那么这个三角形的三边之比就为1:√3:2,cos30°=邻边÷斜边=√3/2。 三角函数的定义 三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。 三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。 三角函数的值 sin 30= 1/2 sin 45=根号2/2 sin 60= 根号3/2 cos 30=根号3/2 cos 45=根号2/2 cos 60=1/2 tan 30=根号3/3 tan 45=1 tan 60=根号3
cos30度等于多少
cos30度是√3/2,约等于0.87。cos30°=邻边÷斜边=√3:2=√3/2。余弦函数的定义域是整个实数集,值域是[-1,1]。它是周期函数,其最小正周期为2π。cos30°=邻边÷斜边=√3:2=√3/2。cos是余弦值,余弦值=邻边÷斜边。因为在三角形中,30°所对的直角边是斜边的一半。所以飧鋈切蔚娜咧�=1:√3:2。扩展资料:余弦函数余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边;(3)已知三角形两边及其一边对角,可求其它的角和第三条边。