莆仙生活网
当前位置: 莆仙生活网 > 知识库 >

约翰-纳什

时间:2024-10-21 08:10:13 编辑:莆仙君

约翰·纳什简介

全名:John Forbes Nash,Jr.专业:数学家和经济学家 国籍:美国人 为什么出名:Nash的工作提供了对日常生活中支配机会和决策的因素的洞察。他的见解对博弈论、微分几何和偏微分方程做出了基本贡献。他的理论应用于经济学、计算学、进化生物学、人工智能、会计学、计算机科学(基于纳什均衡的minimax算法)、技能博弈、政治学和军事理论。纳什与博弈论者雷因哈德·塞尔滕和约翰·哈桑尼分享了1994年诺贝尔经济学奖。2015年,他因在非线性偏微分方程方面的工作获得了阿贝尔奖。1959年,纳什开始出现明显的精神疾病迹象,并在精神病院治疗了几年妄想型精神分裂症。1970年后,他的病情慢慢好转,到1980年代中期,他可以重返学术工作。他与疾病的斗争和康复成为西尔维娅·纳萨尔传记《美丽心灵》的基础,也成为罗素·克罗主演的同名电影。 出生于1928年6月13日出生地:西弗吉尼亚州布鲁菲尔德,美国 一代:无声一代中国生肖:龙星星座:双子座 死亡时间:2015年5月23日(86岁)死因:车祸 事件中的约翰·纳什1994-10-11年度诺贝尔经济学奖授予约翰·哈桑尼,John Nash和Reinhard Selten在Twitter上分享了他们的“非合作博弈论均衡分析的先驱”著名经济学家本伯南克丹尼尔卡尼曼约翰斯图尔特密尔著名数学家让巴蒂斯特约瑟夫德兰布雷尼古拉斯哥白尼索菲日尔曼


著名经济学家、博弈论创始人约翰·纳什是哪部经典电影的人物原型?

著名经济学家、博弈论创始人约翰·纳什是哪部经典电影的人物原型?

A.心灵捕手

B.美丽心灵

正确答案:B

《美丽心灵》是由朗·霍华德执导,罗素·克劳、詹妮弗·康纳利等主演的传记类剧情片。该片于2001年12月21日在美国上映。 影片讲述一位患有精神分裂症但却在博弈论和微分几何学领域潜心研究最终获得诺贝尔经济学奖的数学家约翰·福布斯·纳什的故事。 2002年,该片获得第74届奥斯卡金像奖最佳影片、最佳女配角、最佳导演和最佳改编剧本奖四项大奖。


求约翰·纳什生平介绍?

生平 约翰·纳什生于1928年6月13日。父亲是电子工程师与教师,第一次世界大战的老兵。纳什小时孤独内向,虽然父母对他照顾有加,但老师认为他不合群不善社交。 纳什的数学天分大约在14岁开始展现。他在普林斯顿大学读博士时刚刚二十出头,但他的一篇关于非合作博弈的博士论文和其他相关文章,确立了他博弈论大师的地位。在20世纪50年代末,他已是闻名世界的科学家了。 然而,正当他的事业如日中天的时候,30岁的纳什得了严重的精神分裂症。他的妻子艾利西亚———麻省理工学院物理系毕业生,表现出钢铁一般的意志:她挺过了丈夫被禁闭治疗、孤立无援的日子,走过了惟一儿子同样罹患精神分裂症的震惊与哀伤……漫长的半个世纪之后,她的耐心和毅力终于创下了了不起的奇迹:和她的儿子一样,纳什教授渐渐康复,并在1994年获得诺贝尔奖经济学奖。 如今,纳什已经基本恢复正常,并重新开始科学研究。他现在是普林斯顿大学数学教授,但已经不再任教。学校经济学系经常会举办有关博弈论的论坛,纳什有时候会参加,但是他几乎从不发言,每次都是静静地来,静静地走。 不过,在同事印象里“极不爱说话”的纳什教授将在中国做几场演讲。8月14日至17日在青岛大学,他会以特邀报告人的身份做主题发言,探讨他所奠定学术根基的博弈论的发展趋势。8月21日晚上,在北京国际会议中心,他还将向中国公众做一个公开报告。 小约翰-纳什是所有诺贝尔经济学奖得主中最不幸的,又是不幸中最万幸的人。 纳什不是一个完人,他举止古怪,离经叛道。曾经想放弃美国国籍,几乎遗弃了同居女友和亲生儿子,与深爱他的贤妻艾莉西亚离婚…… 影片《美丽心灵》一举获得8项奥斯卡提名。这部影片以1994年度诺贝尔经济学奖得主之一小约翰·纳什与他的(前)妻子艾莉西亚以及普林斯顿的朋友、同事的真实感人的故事为题材,艺术地重现了这个爱心呵护天才的传奇故事。为了使广大读者进一步了解这位数学和经济学的天才人物,本报特邀我国研究诺贝尔经济学奖获奖者及其学术思想的专家、中国科学技术大学国际经济研究所所长孙健教授,撰文详细介绍纳什博士其人其事。孙教授已发表过多篇评介诺贝尔经济学奖得主及其学术思想的文章。目前正在撰写1969年至2001年的历届诺贝尔经济学奖得主传略及其学术贡献评述的专著。 1950年和1951年纳什的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。从而揭示了博弈均衡与经济均衡的内在联系。纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都沿着这条主线展开的。然而,纳什天才的发现却遭到冯·诺依曼的断然否定,在此之前他还受到爱因斯坦的冷遇。但是骨子里挑战权威、藐视权威的本性,使纳什坚持了自己的观点,终成一代大师。要不是30多年的严重精神病折磨,恐怕他早已站在诺贝尔奖的领奖台上了,而且也绝不会与其他人分享这一殊荣。 纳什是一个非常天才的数学家,他的主要贡献是1950至1951年在普林斯顿读博士学位时做出的。然而,他的天才发现———非合作博弈的均衡,即“纳什均衡”并不是一帆风顺的。 1948年纳什到普林斯顿大学读数学系的博士。那一年他还不到20岁。当时普林斯顿可谓人杰地灵,大师如云。爱因斯坦、冯·诺依曼、列夫谢茨(数学系主任)、阿尔伯特·塔克、阿伦佐·切奇、哈罗德·库恩、诺尔曼·斯蒂恩罗德、埃尔夫·福克斯……等全都在这里。博弈论主要是由冯·诺依曼(1903—1957)创所立的。他是一位出生于匈牙利的天才的数学家。他不仅创立了经济博弈论,而且发明了计算机。早在20世纪初,塞梅鲁(Zermelo)、鲍罗(Borel)和冯·诺伊曼已经开始研究博弈的准确的数学表达,直到1939年,冯·诺依曼遇到经济学家奥斯卡·摩根斯特恩(Oskar Morgenstern),并与其合作才使博弈论进入经济学的广阔领域。 1944年他与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的的初步形成。尽管对具有博弈性质的问题的研究可以追溯到19世纪甚至更早。例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利用博弈论方法帮助田忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,片断的研究,带有很大的偶然性,很不系统。冯·诺依曼和摩根斯特恩的《博弈论与经济行为》一书中提出的标准型、扩展型和合作型博弈模型解的概念和分析方法,奠定了这门学科的理论基础。合作型博弈在20世纪50年代达到了巅峰期。然而,诺依曼的博弈论的局限性也日益暴露出来,由于它过于抽象,使应用范围受到很大限制,在很长时间里,人们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响力很有限。正是在这个时候,非合作博弈———“纳什均衡”应运而生了,它标志着博弈论的新时代的开始!纳什不是一个按部就班的学生,他经常旷课。据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什争辩说,至少上过斯蒂恩罗德的代数拓扑学。斯蒂恩罗德恰恰是这门学科的创立者,可是,没上几次课,纳什就认定这门课不符合他的口味。于是,又走人了。然而,纳什毕竟是一位英才天纵的非凡人物,他广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。殊不知这种暂时的“放弃”,使原来模糊、杂乱和无绪的若干念头,在潜意识的持续思考下,逐步形成一条清晰的脉络,突然来了灵感!这一年的10月,他骤感才思潮涌,梦笔生花。其中一个最耀眼的亮点就是日后被称之为“纳什均衡”的非合作博弈均衡的概念。纳什的主要学术贡献体现在1950年和1951年的两篇论文之中(包括一篇博士论文)。1950年他才把自己的研究成果写成题为“非合作博弈”的长篇博士论文,1950年11月刊登在美国全国科学院每月公报上,立即引起轰动。说起来这全靠师兄戴维·盖尔之功,就在遭到冯·诺依曼贬低几天之后,他遇到盖尔,告诉他自己已经将冯·诺依曼的“最小最大原理”(minimax solution)推到非合作博弈领域,找到了普遍化的方法和均衡点。盖尔听得很认真,他终于意识到纳什的思路比冯·诺伊曼的合作博弈的理论更能反映现实的情况,而对其严密优美的数学证明极为赞叹。盖尔建议他马上整理出来发表,以免被别人捷足先登。纳什这个初出茅庐的小子,根本不知道竞争的险恶,从未想过要这么做。结果还是盖尔充当了他的“经纪人”,代为起草致科学院的短信,系主任列夫谢茨则亲自将文稿递交给科学院。纳什写的文章不多,就那么几篇,但已经足够了,因为都是精品中的精品。这一点也是值得我们深思的。国内提一个教授,要求在“核心的刊物”上发表多少篇文章。按照这个标准可能纳什还不一定够资格。 1996年诺贝尔经济学奖得主莫尔里斯当牛津大学艾奇沃思经济学讲座教授时也没有发表过什么文章,特殊的人才,必须有特殊的选拔办法。 纳什在上大学时就开始从事纯数学的博弈论研究,1948年进入普林斯顿大学后更是如鱼得水。20岁出头已成为闻名世界的数学家。特别是在经济博弈论领域,他做出了划时代的贡献,是继冯·诺依曼之后最伟大的博弈论大师之一。他提出的著名的纳什均衡的概念在非合作博弈理论中起着核心的作用。后续的研究者对博弈论的贡献,都是建立在这一概念之上的。由于纳什均衡的提出和不断完善为博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域奠定了坚实的理论基础。 囚犯的两难处境