莆仙生活网
当前位置: 莆仙生活网 > 知识库 >

l波段

时间:2024-10-09 15:58:37 编辑:莆仙君

雷达波段是如何划分的?

这种划分方式是雷达业内的通俗叫法,没有一个严格、统一的标准。通常的划分是:L波段 1~2GHz;S波段 2~4GHz;C波段 4~8GHz;X波段 8~12GHz;Ku波段 12~18GHz;K波段 18~27GHz;Ka波段 27~40GHz;U波段 40~60GHz;V波段 60~80GHz;W波段 80~100GHz.。拓展资料:无线电波是指在自由空间(包括空气和真空)传播的射频频段的电磁波。无线电波的波长越短、频率越高,相同时间内传输的信息就越多。无线电波在空间中的传播方式有以下情况:直射、反射、折射、穿透、绕射(衍射)和散射。电磁波的一种。频率大约 为 10KHz~30,000,000KHz,或波长30000m~10μm的电磁波,由于它是由振荡电路的交变电流而产生的,可以通过天线发射和吸收故称之为无线电波。 电磁波包含很多种类,按照频率从低到高的顺序排列为:无线电波、红外线、可见光、紫外线、X射线及γ射线。无线电波分布在3Hz到3000GHz的频率范围之间。在不同的波段内的无线电波具有不同的传播特性。频率越低,传播损耗越小,覆盖距离越远,绕射能力也越强。但是低频段的频率资源紧张,系统容量有限,因此低频段的无线电波主要应用于广播、电视、寻呼等系统。高频段频率资源丰富,系统容量大。但是频率越高,传播损耗越大,覆盖距离越近,绕射能力越弱。另外,频率越高,技术难度也越大,系统的成本相应提高。移动通信系统选择所用频段时要综合考虑覆盖效果和容量。UHF频段与其他频段相比,在覆盖效果和容量之间折衷的比较好,因此被广泛应用于手机等终端的移动通信领域。当然,随着人们对移动通信的需求越来越多,需要的容量越来越大,移动通信系统必然要向高频段发展。无线电波的速度只随传播介质的电和磁的性质而变化。无线电波在真空中传播的速度,等于光在真空中传播的速度,因为无线电波和光均属于电磁波。无线电波在其他介质中传播的速度为Vε=C/sqrt(ε)。其中ε为传播介质的介电常数。空气的介电常数与真空很接近,略大于1,因此无线电波在空气中的传播速度略小于光速,通常我们近似认为就等于光速。

雷达波段是如何划分的?

事实上有两种雷达波段的划分系统。老版本的划分规则是根据波长来划分,在二战时制定的。它的规则是这样的: 最初的搜索雷达使用23厘米的波长。他就是人们常听说的 L-波段 (英文Long的缩写). 当更短一些的波长雷达出现时(10cm), 这种雷达通常被人们叫做S-波段, S 是比标准的L波段短的意思(Short). 当火控雷达雷达出现时 (3cm 波长),它被人们叫做 X-波段雷达,因为生活中X通常用来指定和标示地点 . 人们对于搜索雷达和火控雷达的折衷波长的雷达叫做C-波段 (C 是英文单词 Compromise折衷的意思). 德国人发展了更短波长的雷达,它的波长是1.5厘米.德国人叫它K-波段雷达 (K 是 Kurtz, 德语中短的意思). 但不幸的是,由于德国人特有的日尔曼式的严谨,他们选择雷达频率是完全通过水蒸气试验方式求得的,致使K-波段雷达在雨天和雾天时无法使用. 战后人们选定频率略大于 K 波段 的波段为Ka波段(Ka 是 K-above大于K的意思)和频率略小于K 波段 的波段为Ku波段 (Ku是 K-under小于K的意思). 最后,最早的使用米波长的雷达人们叫它P-波段雷达 (P代表英文单词 Previous原先的意思). 但是这个系统十分复杂和繁琐,很难使用. 因此它被合理的系统替代了。新的系统就是按波长的长--短从A排到K。 老的P-波段 = 新的 A/B 波段 老的L-波段 = 新的 C/D-波段 老的S-波段 = 新的 E/F 波段 老的C-波段 = 新的 G/H 波段 老的X-波段 = 新的 I/J 波段 老的K-波段 = 新的 K 波段


天文红外波段如何划分,比如H波段,J波段、L波段

1.红外天文学是用电磁波的红外波段研究天体的一门学科。整个红外波段,包括波长0.7~1000微米(1毫米)的范围。通常分为两个区:0.7~25微米的近红外区和25~1000微米的远红外区;也有人分为三个区:近红外区(0.7~3微米)、中红外区(3~30微米)和远红外区(30~1000微米)。温度4000K以下的天体,其主要辐射在红外区(如图)。红外探测是观测被宇宙尘埃掩蔽的天体的得力手段;红外波段有许多重要的分子谱线;许多河外天体在远红外区的辐射较强。红外天文学正在成为实测天文学的最重要领域之一。
2.红外天文学的主要研究对象是可以观测到红外辐射的天体,是天文学和天文物理学的一个重要分支。可见光的波长范围大约为400纳米(蓝色)至700纳米(红色),波长比700纳米长但仍比微波短的电磁波称为红外线。红外天文学有时也视为可见光天文学的一部份,因为反射镜、透镜等光学元件基本上都能用于红外观测。
在地面上进行红外天文观测,受地球大气的限制很大。大气中的水汽、二氧化碳、臭氧等分子,吸收了红外波段大部分的天体辐射,只有几个透明的大气窗口可供地面观测使用,在这些窗口中被指定的红外测光系统为J(1.2微米)、H(1.6微米)、K(2.2微米)、L(3.6微米)、M(5.0微米)、N(10.6微米)和Q(21微米)。如要在这些窗口以外的波段进行天体红外观测,就必须到高空和大气外进行。地球大气不但吸收天体的红外辐射,而且由于它具有一定的温度(约300K),其自身的热辐射对探测工作、特别是对波长大于 5微米的观测,会造成极强的背景噪声。为了摆脱大气的这种影响,必须到高空和大气以外去进行中、远红外探测。