莱布尼茨公式是什么?
莱布尼兹公式好比二项式定理,它是用来求f(x)*g(x)的高阶导数的。(uv)' = u'v+uv',(uv)'‘ = u'’v+2u'v'+uv'‘依数学归纳法,……,可证该莱布尼兹公式。各个符号的意义Σ--------------求和符号C(n,k)--------组合符号,即n取k的组合u^(n-k)-------u的n-k阶导数v^(k)----------v的k阶导数这个公式和排列组合中的二项式定理相似,二项式定理中的多少次方在这里改为多少阶导数。(uv)一阶导=u一阶导乘以v+u乘以v一阶导(uv)二阶导=u二阶导乘以v+2倍u一阶导乘以v一阶导+u乘以v二阶导(uv)三阶导=u三阶导乘以v+3倍u二阶导乘以v一阶导+3倍u一阶导乘以v二阶导+u乘以v三阶导扩展资料:莱布尼茨公式的推导过程如果存在函数u=u(x)与v=v(x),且它们在点x处都具有n阶导数,那么显而易见的,u(x) ± v(x) 在x处也具有n阶导数,且 (u±v)(n)= u(n)± v(n)至于u(x) × v(x) 的n阶导数则较为复杂,按照基本求导法则和公式,可以得到:(uv)' = u'v + uv'(uv)'' = u''v + 2u'v' + uv''(uv)''' = u'''v + 3u''v' + 3u'v'' + uv'''参考资料来源:百度百科-莱布尼茨公式
莱布尼兹公式是什么?
莱布尼兹公式为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。莱布尼兹公式的意义牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。
莱布尼茨公式
莱布尼兹公式,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。不同于牛顿-莱布尼茨公式,莱布尼茨公式用于对两个函数的乘积求取其高阶导数。一般的,如果函数u=u(x)与函数v=v(x)在点x处都具有n阶导数,那么此时有莱布尼茨公式是导数计算中会使用到的一个公式,它是为了求取两函数乘积的高阶导数而产生的一个公式。人物简介戈特弗里德·威廉·莱布尼茨,德国哲学家、数学家,和牛顿先后独立发明了微积分。有人认为,莱布尼茨最大的贡献不是发明微积分,而是微积分中使用的数学符号。因为牛顿使用的符号普遍认为比莱布尼茨的差。他所涉及的领域及法学、力学、光学、语言学等40多个范畴,被誉为十七世纪的亚里士多德。