如何求一个随机变量的概率密度函数
概率密度函数是针对连续性随机变量而言的,假设对于连续性随机变量x,其分布函数为f(x),概率密度为f(x)。首先,对于连续性随机变量x,其分布函数f(x)应该是连续的,然而你给出的这个函数在x=-1,x=1点都不连续,所以是没有概率密度函数的,可能你在求解分布函数的时候求错了。如果f(x)求正确了,你可以按照下面的思路计算概率密度:由定义f(x)=∫[-∞,x]。f(y)dy可知f'(x)=f(x),也就是分布函数的导数等于概率密度函数,所以你只需要在原来求出的分布函数基础上求导即可得到概率密度函数。简介概率分布函数是概率论的基本概念之一。在实际问题中,常常要研究一个随机变量ξ取值小于某一数值x的概率,这概率是x的函数,称这种函数为随机变量ξ的分布函数,简称分布函数,记作F(x),即F(x)=P(ξ<x) (-∞<x<+∞),由它并可以决定随机变量落入任何范围内的概率。 例如在桥梁和水坝的设计中,每年河流的最高水位ξ小于x米的概率是x的函数,这个函数就是最高水位ξ的分布函数。实际应用中常用的分布函数有正态分布函数、普阿松分布函数、二项分布函数等等。
随机变量的密度函数公式?
概率密度:f(x)=(1/2√π) exp{-(x-3)²/2*2} 根据题中正态概率密度函数表达式就可以立马得到随机变量的数学期望和方差:数学期望:μ = 3方差: σ²= 2连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。扩展资料:随机数据的概率密度函数表示瞬时幅值落在某指定范围内的概率。因此是幅值的函数。它随所取范围的幅值而变化。概率密度函数f(x) 具有下列性质:(1)f(x)≧0;(2)∫f(x)d(x)=1;(3) P(a<X≦b)=∫f(x)dx.