莆仙生活网
当前位置: 莆仙生活网 > 知识库 >

七年级上册数学有理数混合运算计算题

时间:2024-09-11 00:13:21 编辑:莆仙君

七年级数学上册2.6有理数的加减混合运算测验题

  七年级数学上册的关于2.6有理数的加减混合运算的知识已经学完,同学们要如何准备即将到来的测验才能取得好的成绩呢?下面是我为大家带来的关于七年级数学上册2.6有理数的加减混合运算测验题,希望会给大家带来帮助。   七年级数学上册2.6有理数的加减混合运算测验题:   1.设a是最小的自然数,b是最大的负整数,c是绝对值最小的数,则a-b+c的值为(  )   A.-1        B.0   C.1 D.2   2.-6的相反数与比5的相反数小1的数的和为(  )   A.1 B.0   C.2 D.11   3.若四个有理数之和的14是3,其中三个数是-10,+8,-6,则第四个数是(  )   A.+8 B.-8   C.+20 D.+11   4.某运动员在东西走向的公路上练习跑步,跑步情况记录如下(向东为正,单位:米):1 000,-1 200,1 100,-800,1 400,该运动员跑的路程共为(  )   A.1 500米 B.5 500米   C.4 500米 D.3 700米   5.若a+b+c=0,则下列结论正确的是(  )   A.a=b=c=0   B.a,b,c中至少有两个是负数   C.a,b,c中可以没有负数   D.a,b,c中至少有两个是正数   6.把下列各式写成省略括号的和的形式:   (1)(+7)-(+8)+(-1)-(-5)+(+3)=____;   (2)9+(+5)+(-6)-(-7)=________;   (3)-(+3)+(-4)-(-19)-(+11)=________;   (4)-0.21+(-5.34)-(+0.15)-(-1015)=________.   7.运用交换律和结合律计算:   (1)3-10+7=3________7______10=________;   (2)-6+12-3-5=   ______6______3______5______12=______.   8.有理数a,b,c在数轴上的对应点如图所示,计算a-b+c________0(填“>”“<”或“=”).   9.在下列括号内填上适当的数:   (________)-(+12)=-13;   (________)-(-0.05)=10.   10.计算下列各题:   (1)(-9)-(-7)+(-6)-(+4)-(-5);   (2)(+4.3)-(-4)+(-2.3)-(+4).   11.甲、乙两队拔河,标志物向甲队移动0.5 m,又向乙队移动0.8 m,相持后又向乙队移动0.4 m,随后向甲队移动1.5 m,接着再向甲队移动1.2 m,按规定标志物向某队移动2 m即获胜,现在甲队获胜了吗?   (•河南)计算:   434-(+3.85)-(-314)+(-3.15).   七年级数学上册2.6有理数的加减混合运算测验题答案:   1.C a=0,b=-1,c=0,则a-b+c=1.   2.B -(-6)+(-5-1)=0.   3.C 四个有理数之和为12,所以第四个数是+20.   4.B |1000|+|-1200|+|1100|+|-800|+|1400|=5500米.   5.C 若a=b=c=0时,则三个数中可以没有负数.   6.(1)7-8-1+5+3 (2)9+5-6+7 (3)-3-4+19-11 (4)-0.21-5.34-0.15+1015   7.(1)+ - 0 (2)- - - + -2   8.> 9.16 9.95   10.(1)-7 原式=-9+7-6-4+5=(-9-6-4)+7+5=-19+12=-7;   (2)2 原式=4.3+4-2.3-4=2.   11.解:标志物向甲队移动的距离为0.5-0.8-0.4+1.5+1.2=2(m),所以甲队获胜了.   中考链接

七年级有理数加减法混合计算题50道

七年级有理数加减法混合计算题50道 (sinα +cosα)²=sin²α+cos²α+2sinα *cosα=1+2sinα *cosα=(1-√3)²/4=1-(√3)/2 sinα *cosα=-(√3)/4 sinα[(1-√3)/2-sinα]=-(√3)/4 sin²α-(1/2-√3/2)sinα-√3/4=0 (sinα+√3/2)(sinα-1/2)=0 sinα=1/2 或sinα=-√3/2(不在0 七年级有理数加减混合计算题 有理数的加减混合运算(乘除扔了) 1) (-9)-(-13)+(-20)+(-2) (2) 3+13-(-7)/6 (3) (-2)-8-14-13 (4) (-7)*(-1)/7+8 (5) (-11)*4-(-18)/18 (6) 4+(-11)-1/(-3) (7) (-17)-6-16/(-18) (8) 5/7+(-1)-(-8) (9) (-1)*(-1)+15+1 (10) 3-(-5)*3/(-15) (11) 6*(-14)-(-14)+(-13) (12) (-15)*(-13)-(-17)-(-4) (13) (-20)/13/(-7)+11 (14) 8+(-1)/7+(-4) (15) (-13)-(-9)*16*(-12) (16) (-1)+4*19+(-2) (17) (-17)*(-9)-20+(-6) (18) (-5)/12-(-16)*(-15) (19) (-3)-13*(-5)*13 (20) 5+(-7)+17-10 (21) (-10)-(-16)-13*(-16) (22) (-14)+4-19-12 (23) 5*13/14/(-10) (24) 3*1*17/(-10) (25) 6+(-12)+15-(-15) (26) 15/9/13+(-7) (27) 2/(-10)*1-(-8) (28) 11/(-19)+(-14)-5 (29) 19-16+18/(-11) (30) (-1)/19+(-5)+1 (31) (-5)+19/10*(-5) (32) 11/(-17)*(-13)*12 (33) (-8)+(-10)/8*17 (34) 7-(-12)/(-1)+(-12) (35) 12+12-19+20 (36) (-13)*(-11)*20+(-4) (37) 17/(-2)-2*(-19) (38) 1-12*(-16)+(-9) (39) 13*(-14)-15/20 (40) (-15)*(-13)-6/(-9) (41) 15*(-1)/12+7 (42) (-13)+(-16)+(-14)-(-6) (43) 14*12*(-20)*(-13) (44) 17-9-20+(-10) (45) 12/(-14)+(-14)+(-2) (46) (-15)-12/(-17)-(-3) (47) 6-3/9/(-8) (48) (-20)*(-15)*10*(-4) (49) 7/(-2)*(-3)/(-14) (50) 13/2*18*(-7) (51) 13*5+6+3 (52) (-15)/5/3+(-20) (53) 19*4+17-4 (54) (-11)-(-6)*(-4)*(-9) (55) (-16)+16-(-8)*(-13) (56) 16/(-1)/(-10)/(-20) (57) (-1)-(-9)-9/(-19) (58) 13*20*(-13)*4 (59) 11*(-6)-3+18 (60) (-20)+(-12)+(-1)+(-12) (61) (-19)-3*(-13)*4 (62) (-13)/3-5*8 (63) (-15)/1+17*(-18) (64) (-13)/3/19/8 (65) (-3)/(-13)/20*5 (66) 3/12/(-18)-18 (67) 5*(-19)/13+(-6) (68) 4+4*(-19)-11 (69) (-2)+17-5+(-1) (70) 9+(-3)*19*(-19) (71) (-12)-(-6)+17/2 (72) 15*(-5)-(-3)/5 (73) (-10)*2/(-1)/4 (74) (-8)*16/(-6)+4 (75) 2-11+12+10 (76) (-3)+(-20)*(-7)*(-9) (77) (-15)+8-17/7 (78) (-14)*10+18*2 (79) (-7)+2-(-17)*19 (80) (-7)/18/1+1 (81) 11/(-9)-(-16)/17 (82) 15+5*6-(-8) (83) (-13)*(-18)+18/(-6) (84) 11-(-1)/11*(-6) (85) (-4)+(-12)+19/6 (86) (-18)/(-1)/(-19)+2 (87) 9*(-8)*(-6)/11 (88) 20*(-3)*(-5)+1 (89) (-18)-2+(-11)/20 (90) 15*1+4*17 (91) 1-10+(-14)/(-1) (92) 10+(-4)*(-19)+(-12) (93) 15/14/5*7 (94) 8+(-13)/3+1 (95) (-14)+6+(-2)*(-14) (96) (-5)/(-13)/4+7 (97) (-15)/(-2)/(-12)+(-2) (98) (-17)-(-20)-20*(-10) (99) (-7)-10-13/3 (100) (-20)+(-18)+11+9 答案: 1 -18 2 103/6 3 -37 4 9 5 -43 6 -(20/3) 7 -(199/9) 8 54/7 9 17 10 2 11 -83 12 216 13 1021/91 14 27/7 15 -1741 16 73 17 127 18 -(2885/12) 19 842 20 5 21 214 22 -41 23 -(13/28) 24 -(51/10) 25 24 26 -(268/39) 27 39/5 28 -(372/19) 29 15/11 30 -(77/19) 31 -(29/2) 32 1716/17 33 -(117/4) 34 -17 35 25 36 2856 37 59/2 38 184 39 -(731/4) 40 587/3 41 23/4 42 -37 43 43680 44 -22 45 -(118/7) 46 -(192/17) 47 145/24 48 -12000 49 -(3/4) 50 -819 51 74 52 -21 53 89 54 205 55 -104 56 -(2/25) 57 161/19 58 -13520 59 -51 60 -45 61 137 62 -(133/3) 63 -321 64 -(13/456) 65 3/52 66 -(1297/72) 67 -(173/13) 68 -83 69 9 70 1092 71 5/2 72 -(372/5) 73 5 74 76/3 75 13 76 -1263 77 -(66/7) 78 -104 79 318 80 11/18 81 -(43/153) 82 53 83 231 84 115/11 85 -(77/6) 86 20/19 87 432/11 88 301 89 -(411/20) 90 83 91 5 92 74 93 3/2 94 14/3 95 20 96 369/52 97 -(21/8) 98 203 99 -(64/3) 100 -18 急求七年级有理数加减法混合计算题(最少30道)要附答案 有理数练习 练习一(B级) (一)计算题: (1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5) (二)用简便方法计算: (1)(-17/4)+(-10/3)+(+13/3)+(11/3) (2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4) (三)已知:X=+17(3/4),Y=-9(5/11),Z=-2.25, 求:(-X)+(-Y)+Z的值 (四)用">","0,则a-ba (C)若ba (D)若aa,则b是_____________数; (3)从-3.14中减去-π,其差应为____________; (4)被减数是-12(4/5),差是4.2,则减数应是_____________; (5)若b-a0 练习二(B级) (一)计算: (1)(+1.3)-(+17/7) (2)(-2)-(+2/3) (3)|(-7.2)-(-6.3)+(1.1)| (4)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|) (二)如果|a|=4,|b|=2,且|a+b|=a+b,求a-b的值. (三)若a,b为有理数,且|a|0,则必有( ) (A)b与a同号 (B)a+b与a-1同号 (C)a>1 (D)b1 (6)一个有理数和它的相反数的积( ) (A)符号必为正 (B)符号必为负 (C)一不小于零 (D)一定不大于零 (7)若|a-1|*|b+1|=0,则a,b的值( ) (A)a=1,b不可能为-1 (B)b=-1,a不可能为1 (C)a=1或b=1 (D)a与b的值相等 (8)若a*B*C=0,则这三个有理数中( ) (A)至少有一个为零 (B)三个都是零 (C)只有一个为零 (D)不可能有两个以上为零 (二)填空题: (1)有理数乘法法则是:两数相乘,同号__________,异号_______________,并把绝对值_____, 任何数同零相乘都得__________________. (2)若四个有理数a,b,c,d之积是正数,则a,b,c,d中负数的个数可能是______________; (3)计算(-2/199)*(-7/6-3/2+8/3)=________________; (4)计算:(4a)*(-3b)*(5c)*1/6=__________________; (5)计算:(-8)*(1/2-1/4+2)=-4-2+16=10的错误是___________________; (6)计算:(-1/6)*(-6)*(10/7)*(-7/10)=[(-1/6)*(-6)][(+10/7)*(-7/10)]=-1的根据是_______ (三)判断题: (1)两数之积为正,那么这两数一定都是正数; (2)两数之积为负,那么这两个数异号; (3)几个有理数相乘,当因数有偶数个时,积为正; (4)几个有理数相乘,当积为负数时,负因数有奇数个; (5)积比每个因数都大. 练习(四)(B级) (一)计算题: (1)(-4)(+6)(-7) (2)(-27)(-25)(-3)(-4) (3)0.001*(-0.1)*(1.1) (4)24*(-5/4)*(-12/15)*(-0.12) (5)(-3/2)(-4/3)(-5/4)(-6/5)(-7/6)(-8/7) (6)(-24/7)(11/8+7/3-3.75)*24 (二)用简便方法计算: (1)(-71/8)*(-23)-23*(-73/8) (2)(-7/15)*(-18)*(-45/14) (3)(-2.2)*(+1.5)*(-7/11)*(-2/7) (三)当a=-4,b=-3,c=-2,d=-1时,求代数式(ab+cd)(ab-cd)的值. (四)已知1+2+3+......+31+32+33=17*33,计算下式 1-3+2-6+3-9-12+...+31-93+32-96+33-99的值 练习五(A级) (一)选择题: (1)已知a,b是两个有理数,如果它们的商a/b=0,那么( ) (A)a=0且b≠0 (B)a=0 (C)a=0或b=0 (D)a=0或b≠0 (2)下列给定四组数1和1;-1和-1;0和0;-2/3和-3/2,其中互为倒数的是( ) (A)只有 (B)只有 (C)只有 (D)都是 (3)如果a/|b|(b≠0)是正整数,则( ) (A)|b|是a的约数 (B)|b|是a的倍数 (C)a与b同号 (D)a与b异号 (4)如果a>b,那么一定有( ) (A)a+b>a (B)a-b>a (C)2a>ab (D)a/b>1 (二)填空题: (1)当|a|/a=1时,a______________0;当|a|/a=-1时,a______________0;(填>,0,则a___________0; (11)若ab/c0,则b___________0; (12)若a/b>0,b/c(-0.3)4>-106 (B)(-0.3)4>-106>(-0.2)3 (C)-106>(-0.2)3>(-0.3)4 (D)(-0.3)4>(-0.2)3>-106 (4)若a为有理数,且a2>a,则a的取值范围是( ) (A)a1或a0 (C)a2+b3>0 (D)a0 (C)a,b互为相反数; (D)-ab (C)a (5)用四舍五入法得到的近似数1.20所表示的准确数a的范围是( ) (A)1.195≤a0,且|a|>|b|>|c|,则|a|+|b|-|c|+|a+b|+|b+c|+|a+c|等于( ) A.-3a+b+c B.3a+3b+c C.a-b+2c D.-a+3b-3c 17.下列结论正确的是( ) A. 近似数1.230和1.23的有效数字一样 B. 近似数79.0是精确到个位的数,它的有效数字是7、9 C. 近似数3.0324有5个有效数字 D. 近似数5千与近似数5000的精确度相同 18.两个有理数相加,如果和比其中任何加数都小,那么这两个加数( ) (A)都是正数 (B)都是负数 (C)互为相反数 (D)异号 19. 如果有理数 ( ) A. 当 B. C. D. 以上说法都不对 20.两个非零有理数的和为正数,那么这两个有理数为( ) (A)都是正数 (B)至少有一个为正数 (C)正数大于负数 (D)正数大于负数的绝对值,或都为正数。 三计算题 21. 求下面各式的值(-48)÷6-(-25)×(-4) (2)5.6+[0.9+4.4-(-8.1)]; (3)120×( ); (4) 22. 某单位一星期内收入和支出情况如下:+853.5元,+237.2元,-325元,+138.5元,-280元,-520元,+103元,那么,这一星期内该单位是盈余还是亏损?盈余或亏损多少元? 提示:本题中正数表示收入,负数表示支出,将七天的收入或支出数相加后,和为正数表示盈余,和为负数表示亏损。 23. 某地一周内每天的最高气温与最低气温记录如下表,哪天的温差最大哪天的温差最小? 星期 一 二 三 四 五 六 七 最高气温 10ºC 11ºC 12ºC 9ºC 8ºC 9ºC 8ºC 最低气温 2ºC 0ºC 1ºC -1ºC -2ºC -3ºC -1ºC 24、正式排球比赛,对所使用的排球的重量是有严格规定的。检查5个排球的重量,超过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下表: +15 -10 +30 -20 -40 指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题? 25. 已知 ; ; (1)猜想填空: (2)计算① ②23+43+63+983+……+1003 26.探索规律将连续的偶2,4,6,8,…,排成如下表: 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 … … (1) 十字框中的五个数的和与中间的数和16有什么关系? (2) 设中间的数为x ,用代数式表示十字框中的五个数的和. (3) 若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于201吗?如能,写出这五位数,如不能,说明理由。 27.设y=ax5+bx3+cx-5,其中a,b,c,为常数,已知当x= -5时,y=7,求当x=5时,求y的值。 有理数练习题参考答案 一 填空题 1. 4, - , .提示:题虽简单,但这类概念题在七年级的考试中几乎必考。 2. 0,0.提示:|x|≥0,|y|≥0.∴x=0,y=0. 3.相等或者互为相反数。提示:互为相反数的绝对值相等 。 4. 549.5, , .提示:到数轴上两点相等的数的中点等于这两数和的一半. 5. 0.提示:每相邻的两项的和为0。 6. -8.提示: ,4+a=0,a-2b=0,解得:a= -4,b= -2. = -8. 7. x-3=±2。x=3±2,x=5或x=1. 8. -1或7。提示:点3距离4个单位的点表示的有理数是3±4。 9. 3.1415-3.1424.提示:按照四舍五入的规则。 10.1,2.提示:大于零的整数称为正整数。 11. <0.提示:有理数的加法的符号取决于绝对值大的数。 12. =5625=100×5×(5+1)+25; =7225=100×8×(8+1)+25; =100×10×(10+1)+25=11025. 13. , , .提示:这一列数的第n项可表示为(-1)n . 14. 提示:(1)集合是指具有某一特征的一类事物的全体,注意不要漏掉数0,题目中只是具体的几个符合条件的数,只是一部分,所以通常要加省略号。 (2)非负数表示不是负数的所有有理数,应为正数和零,那么非正数表示什么呢?(答:负数和零) 答案:整数集合:{ ……} 负数集合:{ ……} 分数集合:{ ……} 非负数集合:{ ……} 正有理数集合:{ ……} 负分数集合:{ ……} 二 选择题 15. D.提示:对于两个负数来说,绝对值小的数反而大,所以A错误。对于两个正数来说,绝对值大的数大,所以B错误。互为相反数的两个数的绝对值相等。 16.A.提示:-a+b-(-c)-(a+b)+(b+c)-(a+c)= -3a+b+c 17. C.提示:有效数字的定义是从左边第一位不为零的数字起,到右边最后一个数字结束。18.B 19.C 提示:当n为奇数时, , <0. 当n为偶数时, , <0.所以n为任意自然数时,总有 <0成立. 20. D.提示:两个有理数想加,所得数的符号由绝对值大的数觉得决定。 三计算题 21. 求下面各式的值 (1)-108 (2)19 .提示:先去括号,后计算。 (3)-111 .提示: 120×( ) 120×( ) =120×(- )+120× -120× = -111 (4) .提示; =1- + = 22. 提示:本题中正数表示收入,负数表示支出,将七天的收入或支出数相加后,和为正数表示盈余,和为负数表示亏损。 解:(+853.5)+(+237.2)+(-325)+(+138.5)+(-520)+(-280)+(+103) =[(+853.5)+(+237.2)+(+138.5)+(+103)]+[(-325)+(-520)+(-280)] =(+1332.2)+(-1125) =+207.2 故本星期内该单位盈余,盈余207.2元。 23. 提示:求温差利用减法,即最高温度的差,再比较它们的大小。 解:周一温差:10-2=8(ºC) 周二温差:11-0=11(ºC) 周三温差:12-1=11(ºC) 周四温差:9-(-1)=10(ºC) 周五温差:8-(-2)=10(ºC) 周六温差:9-(-3)=12(ºC) 周日温差:8-(-1)=9(ºC) 所以周六温差最大,周一温差最小。 24、 解:第二只排球质量好一些,利用这些资料的绝对值的大小来判断排球的质量,绝对值越小说明越接近规定重量,因此质量也就好一些。 25. (1) (2)①25502500;提示:原式= ②原式= =23×13+23×23+23×33+23×43+23×53+……+23×503 =23(13+23+33+43+53+……+503) =8× =13005000 26. (1) 十字框中的五个数的和等于中间的5倍。 (2) 5x (3) 不能,假设5x=201.x=40.2.不是整数.所以不存在这么一个x. 27.y=ax5+bx3+cx-5,y+5= ax5+bx3+cx,当x=-5时,y+5=12. -(y+5)=-ax5-bx3-cx=a(-x)5+b(-x)3+c(-x) ∴当x=5时,a(-5)5+b(-5)3+c(-5)=-12; a(-5)5+b(-5)3+c(-5)-5= -17 四位以下七年级有理数加减法混合运算70道,只要计算题!急! -38)+52+118+(-62)= (-32)+68+(-29)+(-68)= (-21)+251+21+(-151)= 12+35+(-23)+0= (-6)+8+(-4)+12 = 27+(-26)+33+(-27) 12+35+(-23)+0= 39+[-23]+0+[-16]= [-18]+29+[-52]+60= [-3]+[-2]+[-1]+0+1+2= [-301]+125+301+[-75]= [-1]+[-1/2]+[+3/4]+[-1/4]= [-7/2]+[+5/6]+[-0.5]+4/5+19/6= [-26.54]+[-6.14]+18.54+6.14= 1.125+[-17/5]+[-1/8]+[-0.6]= 我就这些 有理数加减混合计算题 [-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3) 5+21*8/2-6-59 68/21-8-11*8+61 -2/9-7/9-56 4.6-(-3/4+1.6-4-3/4) 1/2+3+5/6-7/12 [2/3-4-1/4*(-0.4)]/1/3+2 22+(-4)+(-2)+4*3 -2*8-8*1/2+8/1/8 (2/3+1/2)/(-1/12)*(-12) (-28)/(-6+4)+(-1) 2/(-2)+0/7-(-8)*(-2) (1/4-5/6+1/3+2/3)/1/2 18-6/(-3)*(-2) (5+3/8*8/30/(-2)-3 (-84)/2*(-3)/(-6) 1/2*(-4/15)/2/3 -1-23.33-(+76.76); 1-2*2*2*2; (-6-24.3)-(-12+9.1)+(0-2.1); -1+8-7 -20+(-14)+(-2)+19 66+(-21)-(-21)+15 41-6+(-51) -9+2-3 1/7+5/6+(-1/7) 13+(-5)+(-6)+(+34) -5+6+9-7 1/8+(-1/4)+(-6) -17+8+9+(-14) 25+(-18)+(-17)+(-22) 有理数的加减法计算题(50道)急! 一道七年级有理数混合运算的计算题。 (-3×5)的七次方×0.2的七次方-0.125的八次方×8的八次方= =(-3×5×0.2)的七次方-(0.125×8)的八次方 =(-3)的七次方-1 =-2187-1=-2188 40道加减法混合计算题? (32)+56-68 1.125+[-17/5]-[-1/8]+[-0.6]= (-32)+68+(-29)+(-68)= 39+[-23]+0-[-16]= [-4/9]+[-3/5]-[+11/8]+[+5/9]+[-1/8]+[-0.4]= (-21)-251+21+(-151)= [-18]-58+[-52]+60= [-3]+[-2]+[-1]-89+1+2= (-8)-(-1)+85 45+(-3... 有理数加减乘除混合计算题 9+(-3)-(+3)乘⑤÷⑦=... 随便一处不就行了吗