kmeans中的k的含义
kmeans中的k的含义如下:k-means,k指类别个数,means平均的意思,类别和平均,这两个词基本上阐述了k-means聚类算法的中心思想,用一种取平均值的方法来把数据点分为k类,取平均值的方法指的是通过计算同一类数据点的中心,不断地寻找i数据点中心,直到所有的数据点都很好的被分到相应的类别中。这里我用很好这个词来形容,实际上在真正处理的过程中是有一定的判别准则的。kmeans即k均值算法。k均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。手肘法的核心思想是:随着聚类数k的增大,样本划分会更加精细,每个簇的聚合程度会逐渐提高,那么误差平方和SSE自然会逐渐变小。并且,当k小于真实聚类数时,由于k的增大会大幅增加每个簇的聚合程度,故SSE的下降幅度会很大,而当k到达真实聚类数时,再增加k所得到的聚合程度回报会迅速变小,所以SSE的下降幅度会骤减,然后随着k值的继续增大而趋于平缓,也就是说SSE和k的关系图是一个手肘的形状,而这个肘部对应的k值就是数据的真实聚类数。当然,这也是该方法被称为手肘法的原因。
kmeans是什么意思
kmeans的意思:是一种简单的聚类方法,一般在数据分析前期使用,选取适当的k,将数据分类后,然后分类研究不同聚类下数据的特点。Kmeans聚类算法是一种常用的聚类方法。Kmeans算法是一个重复移动类中心点的过程,把类的中心点,也称重心(centroids),移动到其包含成员的平均位置,然后重新划分其内部成员。k是算法计算出的超参数,表示类的数量;Kmeans可以自动分配样本到不同的类,但是不能决定究竟要分几个类。k必须是一个比训练集样本数小的正整数。有时,类的数量是由问题内容指定的。