开普勒三大定律内容及公式是什么?
开普勒三大定律内容及公式如下:开普勒第一定律(轨道定律):每一行星沿一个椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。开普勒第二定律(面积定律):从太阳到行星所联接的直线在相等时间内扫过同等的面积。用公式表示为:SAB=SCD=SEK。开普勒第三定律(周期定律):各个行星绕太阳公转周期的平方和它们的椭圆轨道的半长轴的立方成正比。公式:(R^3)/(T^2)=k(其中k=GM/(4π^2))。详细内容介绍:开普勒在1609年发表了关于行星运动的两条定律,一条是开普勒第一定律,也叫轨道定律,内容是所有的行星绕太阳运动的轨道都是椭圆的,太阳处在椭圆的一个焦点上。开普勒第二定律,也叫面积定律,对于任何一个行星来说,它与太阳的连线在相等的时间扫过相等的面积。用公式表示为:SAB=SCD=SEK。到了1619年时,开普勒又发现了第三条定律,也就是开普勒第三定律,也称为周期定律,内容为所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。以上内容参考:百度百科-开普勒定律
开普勒三大定律?
开普勒三大定律分别是:1、椭圆定律所有行星绕太阳的轨道都是椭圆,太阳在椭圆的一个焦点上。2、面积定律行星和太阳的连线在相等的时间间隔内扫过相等的面积。3、调和定律所有行星绕太阳一周的恒星时间( )的平方与它们轨道长半轴(ai)的立方成比例,即 。资料拓展:开普勒定律是德国天文学家开普勒提出的关于行星运动的三大定律。第一和第二定律发表于1609年,是开普勒从天文学家第谷观测火星位置所得资料中总结出来的;第三定律发表于1619年。这三大定律又分别称为椭圆定律、面积定律和调和定律。开普勒定律,或者是用几何语言,或者是用方程,将行星的坐标及时间跟轨道参数相连结。牛顿第二定律是一个微分方程。开普勒定律的导引涉及解微分方程的艺术。我们会先导引开普勒第二定律,因为开普勒第一定律的导引必须建立于开普勒第二定律。
开普勒三大定律内容及公式是什么?
开普勒三大定律公式是:SAB=SCD=SEK。内容是:开普勒第一定律(轨道定律):每一行星沿一个椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。开普勒第二定律(面积定律):从太阳到行星所联接的直线在相等时间内扫过同等的面积。开普勒第三定律(周期定律):各个行星绕太阳公转周期的平方和它们的椭圆轨道的半长轴的立方成正比。开普勒三大定律的意义:开普勒定律在科学思想上表现出无比勇敢的创造精神。远在哥白尼创立日心宇宙体系之前,许多学者对于天动地静的观念就提出过不同见解。但对天体遵循完美的均匀圆周运动这一观念,从未有人敢怀疑。开普勒却毅然否定了它。这是个非常大胆的创见。哥白尼知道几个圆合并起来就可以产生椭圆,但他从来没有用椭圆来描述过天体的轨道。正如开普勒所说,“哥白尼没有觉察到他伸手可得的财富”。
开普勒第二定律,行星在相同时间内扫过的面积怎么表示
你好:此值偏小,通过对开普勒第二定律的证明可知行星扫过面积的速率与动量有关(p=2mu),显然你是用圆轨计算的,它的动量比椭圆轨偏小。
行星对太阳的角动量p守恒:
p=r*m*v*sinθ(θ是矢径r与行星速度v的夹角。)在足够小的dt时间内太阳到行星的矢径r扫过的角度很小,于是在dt时间内矢径r掠过的三角形的面积为dS=0.5*r*v*dt*sinθ
矢径r掠过的面积速度为u=dS/dt=(0.5*r*v*dt*sinθ) /dt=0.5*r*v*sinθ
2mu=p。得证!