电磁转换 怎么才能快速掌握
关于和手有关的定则,有三个.
一、左手定则,可以理解为用来判断力的一个定则,安培力,洛伦兹力都可以用左手定则来判断.
安培力.让磁感线穿过手心,大拇指和其余四个手指垂直,电流方向为四个手指所指方向,则大拇指所指方向为该导线收到的安培力的方向.
洛伦兹力,带电粒子定向移动就会产生电流,只需要把带电离子等效为电流,判断方法和安培力相同,注:正粒子运动方向,即为电流方向,负粒子运动方向和电流方向相反.
二、右手定则.用来判断电磁感应中电流方向的.同样伸出右手,磁感线穿过手心,大拇指所指方向为导体运动方向,四指所指方向为感应电流方向.
三、右手螺旋定则.用来判断螺线管产生的磁场方向的,同样,楞次定律用到的也是右手螺旋定责,由磁场判断感应电流方向.
右手握住螺线管,四指所指方向为电流方向,大拇指所指方向为产生的磁场的n极.楞次定理与其相反.
电为何能转换成磁能,而磁又为何能转换成电能?
定则
表示电流和电流激发磁场的磁感线方向间关系的定则,也叫右手螺旋定则.
(1)直线电流的安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,那么弯曲的四指所指的方向就是磁感线的环绕方向
(2)环形电流的安培定则:让右手弯曲的四指和环形电流的方向一致,那么伸直的大拇指所指的方向就是环形电流中心轴线上磁感线的方向.
性质
直线电流的安培定则对一小段直线电流也适用.环形电流可看成许多小段直线电流组成,对每一小段直线电流用直线电流的安培定则判定出环形电流中心轴线上磁感强度的方向.叠加起来就得到环形电流中心轴线上磁感线的方向.直线电流的安培定则是基本的,环形电流的安培定则可由直线电流的安培定则导出直线电流的安培定则对电荷作直线运动产生的磁场也适用,这时电流方向与正电荷运动方向相同,与负电荷运动方向相反.
在H.C.奥斯特电流磁效应实验及其他一系列实验的启发下 ,A.-M.安培认识到磁现象的本质是电流 ,把涉及电流 、磁体的各种相互作用归结为电流之间的相互作用,提出了寻找电流元相互作用规律的基本问题.为了克服孤立电流元无法直接测量的困难 ,安培精心设计了4个示零实验并伴以缜密的理论分析,得出了结果.但由于安培对电磁作用持超距作用观念,曾在理论分析中强加了两电流元之间作用力沿连线的假设,期望遵守牛顿第三定律,使结论有误.上述公式是抛弃错误的作用力沿连线的假设,经修正后的结果.应按近距作用观点理解为,电流元产生磁场,磁场对其中的另一电流元施以作用力.
安培定律与库仑定律相当,是磁作用的基本实验定律 ,它决定了磁场的性质,提供了计算电流相互作用的途径.
安培力公式
电流元I1dι 对相距γ12的另一电流元I2dι 的作用力df12为:
μ0 I1I2dι2 × (dι1 × γ12)
df12 = —— ———————————
4π γ123
式中dι1、dι2的方向都是电流的方向;γ12是从I1dι 指向I2dι 的径矢.安培定律可分为两部分.其一是电流元Idι(即上述I1dι )在γ(即上述γ12)处产生的磁场为
μ0 Idι × γ
dB = —— —————
4π γ3
这是毕-萨-拉定律.其二是电流元Idl(即上述I2dι2)在磁场B中受到的作用力df(即上述df12)为:
df = Idι × B
请问电与磁有什么本质区别和联系?或者说两者是如何具体转化的?
电和磁的本质一、电性依据物质均有电性,而电性有正负之分,且“同电相斥,异电相吸”,可得此结论:1、任何物质,均可对外释放特定的能量——否则,其无法对其它蕴含能量的物质,产生影响。2、此特定的能量,所蕴含的能量大小,远小于释放其的物质(可认为前者较后者,低一个能量级别)——否则,在短时间内,物质便会因释放特定的能量(简称为低释),而出现明显的质量损失。3、任何物质,所低释的能量的种类,均相同,且必为2种——使物质显正性的能量,为阳能;使物质显负性的能量,为阴能。4、若特定物质,所释放的阳能的强度,大于阴能,则其呈正性;所释放的阳能的强度,小于阴能,则其呈负性;若两者相当,则其呈中性(即既呈正性,又呈负性)。5、电中性,是物质最稳定的状态;任何非电中性的物质,均有向电中性衍化的趋势。且物质的电性,越偏离电中性,则越不稳定;越接近电中性,则越稳定。综上,物质因释能时,所低释的阳能与阴能的强度存在差异,而呈现出的性质,是为电性。二、磁性(一)如欲明白磁的本质,须先知晓低释与运动的关联:1、任何物质,都必须低释且运动。2、低释和运动,是物质进行能量消减、仅有的两种方式。3、能量的消减,可使物质更为稳定。4、在封闭的系统中,特定物质在特定时间内,所消减的能量的强度,必为定值。5、若特定物质经低释所消减的能量增多,则其经运动所消减的能量将减少;反之,若经运动所消减的能量增多,则经低释所消减的能量将减少。6、对于不具备体积的物质(可视为内部的能量绝对均匀分布的具备体积的物质)而言,其在对外的各方向上,所消减的能量的强度均相同。三、磁性(二)特定物质由于运动,使得其内同一能心线(指过特定物质的质心,两端终于其表面的虚拟线段)上,相反的两方向上,所低释的能量强度存在差异,而呈现出的性质,是为磁性。具备磁性的物质,是为带磁体。磁性有磁阳性与磁阴性之分。特定物质由于运动,在特定能心线的某方向上:所低释的能量强度高于反方向,而在此能心线的此方向上呈现出的性质,是为磁阳性;所低释能量强度低于反方向,而在此能心线的此方向上呈现出的性质,是为磁阴性;所低释的能量强度等于反方向,而在此能心线的此方向上不具备磁性,是为磁中性。四、磁性(三)在呈磁阳性的方向上,特定物质所低释的能量强度越大于反方向,则其在此能心线的此方向上,磁阳性越强;反之,则越弱。同理,在呈磁阴性的方向上,特定物质所低释的能量强度越小于反方向,则其在此能心线的此方向上,磁阴性越强;反之,则越弱。特定物质的同一能心线上,相反的两方向上,所低释的能量相抵消后,而剩余的能量,是为磁能。正是磁能的存在,使得特定物质在此能心线上,具备磁性。所以,只要特定物质的同一能心线上的两相反反向上,所低释的能量的强度,存在差异——那么,此能心线上,便存在磁能。显然,与运动方向的夹角(0~90°)越大的能心线上,特定物质的磁能的强度越小,磁性相应越弱;反之,与运动方向的夹角(0~90°)越小的能心线上,特定物质的磁能的强度越大,磁性相应越强。五、磁极过特定物质质心,且与其运动方向垂直的虚拟平面,是为磁对称面。磁对称面将特定物质一分为二,其中:与运动方向同向的部分,整体呈磁阴性,称为磁阴极;与运动方向反向的部分,整体呈磁阳性,称为磁阳极。磁阳极与磁阴极,合称磁极。可以确定,人们习惯使用的N极与S极,分别对应着磁阳极与磁阴极。磁极具备明显磁性的物质,是为磁体;磁极不具备明显磁性的物质,是为磁中体。须知特定物质的磁性越弱(即越接近磁中性),越为稳定;磁性越强,越不稳定。所以,同能级的不同磁体,将出现“同极相斥,异极相吸”的现象。磁阳极或磁阴极总的磁性强度,便是相应磁体磁性的强度。与电性相同,磁性亦可叠加或抵消。对磁中体而言,磁极的磁性不明显,既可因运动速率低引起,亦可由内部物质的磁性相互抵消所致。六、磁与电的转化至此,想必各位对磁与电的转化原理,已有较为深入的认识。未通电时,电子的运动方向并无规律可循;导线内,各电子的磁性基本相互抵消,故导线为磁中体。通电后,大量的电子沿导线定向运动,导线内移动的电子的磁性相互叠加,故导线成为磁体——此即电生磁的原理。磁感线,实是人为虚拟出的磁性强度线。同一磁感线上,磁性的类型与强度相同——换而言之,同一磁感线上,任意两点间,并无磁能存在。同理可知,均匀的磁场,实为磁中体——其内任意两点之间,所低释的能量强度,并不存在差异。所以,磁体在均匀的磁场中,并不会因磁性而运动。而导线做切割磁感线的运动时,运动前后,两处的磁场强度不同,故两者之间存在磁能与磁性,从而诱发具备磁性的电子定向运动,进而产生电流——此即磁生电的原理。
电和磁之间的关系
电和磁之间的关系
电生磁、磁生电的关系充分体现了物质处于永恒的运动中,不同的物质和不同的运动形式之间又发生着相互作用。实验证实电磁相互作用,通过实验,了解通电导线在磁场中会受到力的作用,力的方向与电流及磁场的方向都有关系;通过实验,探究导体在磁场中运动时产生感应电流的条件。
有时候当我们把手在跆拳道教室地板上摩擦的时候再碰别人的身子就会有电,磁铁和磁铁有时候两块磁铁能吸在一起,有时候两块磁铁会相斥。
问题:这是什么现象?
实验:我们可以放置一个小指南针,在桌子上,拿一个长磁铁放在小磁针边上,会发现小磁针不在向南指,而是被磁铁吸了过去。
磁场和电有没有什么关系?
实验:我们准备铜线,电池,将铜线绕成一个铜圈,分别挂在两根铁丝上,在两个铁丝上连接电源。
实验结果:在连接电源后,铜丝开始转动。
实验结论:所以电和磁是有关系的。电可以产生磁力。