用辗转相除法求2个数的最大公约数,怎么做?
int divisor (int a,int b) /*自定义函数求两数的最大公约数*/{int temp; /*定义整型变量*/if(a<b) /*通过比较求出两个数中的最大值和最小值*/{temp=a;a=b;b=temp;} /*设置中间变量进行两数交换*/while(b!=0) /*通过循环求两数的余数,直到余数为0*/{temp=a%b;a=b; /*变量数值交换*/b=temp;}return a; /*返回最大公约数到调用函数处*/}。扩展资料:假如需要求 1997 和 615 两个正整数的最大公约数,用欧几里德算法,是这样进行的:1997 / 615 = 3 (余 152)615 / 152 = 4(余7)152 / 7 = 21(余5)7 / 5 = 1 (余2)5 / 2 = 2 (余1)2 / 1 = 2 (余0)至此,最大公约数为1以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。
辗转相除法求最大公约数的原理是什么?
辗转相除法求两个数的最大公约数的步骤如下:
先用小的一个数除大的一个数,得第一个余数;
再用第一个余数除小的一个数,得第二个余数;
又用第二个余数除第一个余数,得第三个余数;
这样逐次用后一个数去除前一个余数,直到余数是0为止。那么,最后一个除数就是所求的最大公约数(如果最后的除数是1,那么原来的两个数是互质数)。
例如求1515和600的最大公约数,
第一次:用600除1515,商2余315;
第二次:用315除600,商1余285;
第三次:用285除315,商1余30;
第四次:用30除285,商9余15;
第五次:用15除30,商2余0。
1515和600的最大公约数是15。
辗转相除法是求两个数的最大公约数的方法。如果求几个数的最大公约数,可以先求两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数。这样依次下去,直到最后一个数为止。最后所得的一个最大公约数,就是所求的几个数的最大公约数。